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Abstract

Connected networks of nodes representing conceptual knowledge are widely
employed in artificial intelligence and cognitive science. This report describes a direct
way of realizing these semantic networks with neuron-like computing units. The
proposed framework appears to offer several advantages over previous work. It
obviates the need for a centralized knowledge base interpreter, thereby partiall,

* solving the problem of computational effectiveness and also embodies an evidential
semantics for knowledge that provides a natural treatment of defaults, exceptions and
"inconsistent'-&r conflicting information. The model employs a class of inference
that may be characterized as working with a set of competing hypotheses, gathering
evidence for each hypothesis and selecting the best among these. The resulting
system has been simulated and is capable of supporting existing semantic network
applications dealing with problems of recognition and recall in a uniform manner.k
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1. Introduction

The past few years have witnessed a significant reawakening of interest in
massively parallel computation, often portrayed as neural nets. Rapid advances in
computational, behavioral and biological theories have brought about a new and
much more sophisticated effort to model cognition and perception in physiologically
plausible terms. But essentially all of the detailed work has been concerned with
relatively peripheral (low conceptual level) activities such as early vision, word
recognition, speech and motor control. Higher mental functions such as language
comprehension, logical inference and planning have not been treated effectively with
massively parallel techniques and many scientists believe that it is impossible to do
so. One purpose of this paper is to suggest a particular set of (connectionist)
mechanisms for a general representation of conceptual information and for using this
information in inferences. These mechanisms appear to form an adequate base for
the study of problems of higher-level vision and language understanding.

The representation of complex knowledge and associative access to it are
recognized to lie at the core of intelligence. Semantic Networks - graph structures
with *concepts' as nodes and 'associations' as arcs - have become a standard way of
envisioning knowledge representation schemes. This paper suggests a unified
approach to semantic network representations, which appears to have a number of
advantages over previous schemes.

Semantic network models of various kinds have been used in a wide range of
studies in artificial intelligence and cognitive science. One line of work uses
"spreading activation' in concept networks to model contextual effects in e.g. word
perception [McClelland & Rumelhart 81], disambiguation [Quillian 68: Cottrell &
Small 831, speech production [Dell 801 and memory retrieval [Anderson 83]. Most
other work using semantic network models assumes that the network is passive and is
interpreted by a control program. Interpreted semantic networks can be further
divided into recognition and deduction applications of networks. Recognition of
complex visual scenes is almost universally based on network models at the higher
conceptual levels [Ballard & Brown 82; Marr & Nishihara 78 and speech recognition
work often has this character [Lowerre & Reddy 79]. Deduction models employing
semantic networks are generally employed in natural language and related research
[Walker 78; Findler 79].

All of these various uses of semantic networks make somewhat different demands
on the representation and have evolved to the point where they have distinct
computational characteristics. The most important point for us is the presence or
absence of a distinct interpreting program that can examine and modify the network.
For a variety of reasons to be outlined below, we will consider only systems with no

* interpreter and attempt to show how such systems can support all the existing
applications of semantic networks. The only computational primitives in our models
will be the calculation and transmission of activity states. This is the computational
characteristic of neural net models -- whence the title of the paper.

In addition to the general virtues of uniformity we have several technical reasons
for exploring activation (or value passing [Fahlman 82]) models of semantic
networks. One technical problem arises when the information to be captured
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contains apparently inconsistent statements. A well known example is given below.
The four facts:

Dick is a Quaker
Quakers are pacifists
Republicans are not pacifists
Dick is a Republican

could well arise in real life without causing difficulty. In standard semantic network
models using conventional logic as a basis, the four statements entail a contradiction
which, in the worst case, could render the system useless. More sophisticated non-
monotonic logical treatments [Reiter 801. suggest that the system must choose a
consistent subset of the four assertions, but this entails making arbitrary choices and
amounts to ignoring some of the information provided. There is no denying that Dick
could be a Quaker and a Republican at the same time. There is some evidence ti' t
Dick is not a pacifist (because he is a Republican and Republicans tend to be nc,:,-
pacifists) at the same time there is some evidence that he is a pacifist (he is a Quaker
and Quakers tend to be pacifists). One goal for our semantic network model is that it
be able to incorporate evidential statements like those in the example and to draw
appropriate inferences from them. The Republican-Quaker example is t.pical of a
large number of evidential conflict situations. F- or example: knoving that someone
likes Mexican food but dislikes chicken does not specify whether he 'ill like Chicken
Mole. But if we know the strength of his likes and dislikes, the question might be
easily answered.

Another technical issue that we address in the current model is the specification
of 'natural kind* terms. There is no way to specify exactly what conditions are
necessary and sufficient to have somt.'ing be deemed an 'elephant' or *chair' or
'fight' [Smith & Medin 811. We will tre." his issue also as one of evidence. The idea
is seen most clearly in the realm ',' visual input, where various features are
recognized with varying degrees of confidence. There is an enormous variet% of
conditions under which one would be willing to assert the presence of a chair. In our
treatment, chair legs are evidence for the presence of a chair in the same way that
Republicanism is evidence for non-pacifism. The major difficult% with this approach
is the absence of an adequate mathematical theory of evidential reasoning: we will
say more about this in Section 5.1.

An evidential framework seems to be useful for both characterizing entities and
for dealing with conflicting assertions, but one could pursue evidential formulations
without abandoning the interpretive version of semantic nets [Lowrance 821.
Abandoning the interpretive model has several distinct benefits which will be
discussed at appropriate places in the paper. For now, we will be content with oneconsideration which has led us (and others) to concentrate on massively parallel,active networks for modelling intelligent behavior.

Psychological and biological results suggest that many cognitive tasks like visual
recognition, categorization and associative retrieval do not take more than 100
sequential steps. This follows because typical neuronal firing rates are a few
milliseconds and the response time of cognitive agents during numerous
experimental tasks is a few hundred milliseconds. This observation imposes a major

" ""°S i i :, . . . . .... . . .
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constraint on the manner in which conceptual information may be organized and
accessed and is one reason for our rejection of an interpreter. Other motivations for
the choice of spreading activation models include their good fit with human data on
retrieval [Dosher 83], on errors [Dell 80] and variability and the clear mapping to the
underlying physiological substrate.

The massively parallel (connectionist) formulation of semantic networks avoids
the interpreter bottleneck, but brings in a whole range of new problems in
representation, stability, learning, etc. There is a growing literature dealing with these
issues. We will concern ourselves in this paper only with representation questions,
using a particular computational model outlined in Section 1.2 and presented in
detail in [Feldman & Ballard 82]. There is enough experience with the theoretical
and experimental properties of this formulation to convince us that the key
computational questions can be resolved. The machine examples in this paper were
all built using a general purpose simulator [Small et al. 821 which has also been used
in a variety of other domains [Addanki 83: Cottrell & Small 831. By suppressing the
computational issues, we are able to focus on the questions of representation and use
of knowledge of which there are plenty. The central question addressed in this paper
is the efficacy of a self-activating semantic network as the vehicle for conceptual
reasoning.

In our formulation, a semantic network (SN) is an information retrieval
mechanism with a limited amount of built-in inference (cf. [Allen 83]). The first
issues to be addressed are how a quer) is presented to a SN and how an answer is
returned. In order to keep the treatment uniform, we require that the query be
presented and the answer be received in connectionist fashion. This is achieved by
introducing a simple kind of routines expressed as connectionist networks. A query
arises from a point in a routine where information is needed and answers are
returned by activating appropriate units in the inquiring routine. Our routines are,
like schemes and scripts, not adequate to model the full range of plans and actions
[Schank 82] but will suffice for our purposes (cf. Section 5.2).

We will start with a trivial example to introduce the notation and general
framework of our treatment. Figure 1.1 shows a fragment of a simple restaurant
routine for a person who always orders one of two lunches depending upon how
hungry he is. A routine is represented as a sequence of nodes (units) connected so
that activation can serve to sequence through the routine. Stepping from one node in
a routine to its successor will depend on a completion signal which will not be shown
explicitly. We depict action steps as oval-shaped nodes, queries as hexagonal nodes
and answers as circular ones. In this routine, ordering a meal gives rise to a query
about the person's state of hunger, directed to the semantic network which this paper
is attempting to characterize. Answers are supposed to come from units (as yet
unspecified) that are connected to the [yes] and [no] units in the routine. The [yes]
and [no] nodes are primed by the question unit to be responsive to activation and are
connected in a WTA (winner-take-all) (described later in Section 3.2) fashion to force
a decision. Whichever answer node dominates will activate its successor and thus
trigger the appropriate speech act. We will obviously be dealing with more complex
routines, queries and answers, but the basic structure of this example will be
maintained throughout the paper. Some of the questions raised and avoided in this
formulation of the problem will be discussed in Section 5.

0'
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The routine of Figure 1.1 is particularly simple because the query involves no
input information. A somewhat more complex routine fragment is required for
someone who orders the daily special if it is a meal that he likes and falls back on his
-regular order if the special doesnt appeal to him (Figure 1.2). In this case, the query
to the Semantic Network must include some situational information, namely the
special featured that day. Routines will generally include several such parameters
that w ill need to be specified in the execution of the routine. We call these roles and
they will play a central part in our treatment. A role will be bound to a concept for
the execuuon of its routine. In Figure 1.2, the [special] role might be bound to
Th-,'n]. We assume that this binding is implemented by a dynamic link netikork (cf.

terdman, 82a]) so that activating either end of the [special - ham] link will activate
z. other end. Notice that the binding will permit parameterized actions such as

rdering ham when ham is the daily special. Roles correspond to ty ped or sorted frce
.riables in a formulation based on mathex'?ical logic.

World knowledge, such as one's taste for ham. is encoded in the semantic
network (SN) which is the main focus of this paper. For this intrduction. '.,. : wilt
give a crude o~erview of how the SN and the luncheon routine ;, ould interact in
choosing what to order. The various concepts in the SN will be represented b,
mtdiidual nodes, which will be depicted by rectangular boxes. Since there is no

t:n-rtpreter. the links between concepts will have to be tightlN specified in their
spr.ading of activation. All of this is worked out in Sections 2-4. The oxersimplified
nerkork given in Figure 1.3 has each kind of food directlh linked . the answers for
wh.ch it is appropriate. In this case. activating the question [special appeals?] acti atcs
ti" role node for [special] which activates its binding [ham]. The [ham] unit in the
rie network directl% activates the [ham] node in the SN which sends acti-ation to
th particular [yes] node of this routine (as well as to many other places). Since thi"
routine and the particular [yes] node are enabled. actiation continues to the
appropriate response. The dynamic link [special - ham] will then cause the word
"'ham" to be spoken when the [say special] action is carried out.

The remainder of the paper is concerned with the details of this process. Figure
1.4 gi'es a more accurate indication of the knowledge representation mecl.anism.
The network in Figure 1.4 encodes the following information:

HWM and YAM are two types of objects in the domain.
Objects in the example domain are characterized by two pronerties, H.-I-
T.4STE and HAS-FOOD-AI.VD.
HAM is SALTY in taste and is a kind of MFA1,
YAM is SWEA in taste and is a kind of VEGHAB.-.

Each arc in the network represents a pair of links, one in either direction. We are
using an arc in place of a pair of links to improve the readibility of these diagrams.

The triangular nodes in the network associate objects, properties and propert
'alues.

Each node is a computing element and, %hen in an "active" state, sends cut
acti'ation to all the nodes connected to it. A node may become active on receiling
activation from another node or an external source. Triangular nodes behave slightly

- - - - - - - - - - - - - - - .



differently in that they become active only on receiving simultaneous activation from
two nodes.

The crude description given above is sufficient to demonstrate how simple
recognition and retrieval tasks may be handled by such networks. To find an object
in the network with a salty taste one would activate the nodes HAS-TASTE and
SALTY. The triangular node linking HAS-TASTE and SALTY will receive coincident
activation along two of its links and become active. As a result, it will transmit
activation to HAM which will ultimately become active.

Alternately, assume that one is interested in finding out the taste of HAM. This
could be done by activating the nodes HAS-TASTE and HAM. This will cause the
same triangular node to become active and transmit activation to SALTY. Eventually,
SALTY will become active completing the retrieval.

The two examples roughly correspond to the manner in which recognition
and retrieval take place in these networks. The detailed description of how questions
like these can be treated uniformly in connectionist networks is fairly complex and is
broken up into three parts. Section 2 describes our formalization of conceptual
knowledge without reference to particular computational mechanisms and may be of
independent interest to researchers whose connectionism remains inhibited. The
central ideas are the evidence formulation, multiple structural hierarchies and
articulating treatments of type-token and attribute-value relationships. Section 3 is
concerned with inferences in our interpreter-free model. The basic semantic network
is shown to be adequate for associative retrieval and basic categorization judgments,
along with some generalized inheritance inferences: It is suggested that routines and
their associated role networks suffice for a wide range of further inferences. All of
this is done in the absence of computational details, which are presented in Section 4.
The computational model includes the specification of the roles of connection and
activation for the different classes of nodes in the network and of the strength of
weights on connections. Section 5 consists of brief discussions of several important
issues that are beyond the scope of the current paper. These include technical
questions on convergence and evidence theory, the treatment of complex ontological
types such as events, and of diffuse conceptual structures, and the basic problem of
learning. This paper, then, fulfills one promise made in earlier connectionist tracts
[Feldman & Ballard 82; Feldman 82b] and indicates how several additional pieces

0 might fit into the puzzle.

The next subsection briefly describes the connectionist model and may be
skipped if the reader is familiar with the model.

1.2 The Connectionist Model
0

Connectionism provides a plausible model of computations carried out in
neuronal networks and, independent of any such consideration, is a powerful model
of massively parallel computation. The details of the connectionist model in its
current state of development have been laid out in [Feldman & Ballard 82; Feldman
82a]. We present the salient features below.

Connectionist networks are made up of active elements that are capable of

-S
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performing simple processing. These units have very high fan-ins and fan-outs and
communicate with the rest of the network by transmitting a simple value. A unit
transmits the same alue to all units to which it is connected. The output value is
closely related to the unit's potential and is best described as a level of activatien. A
unit's potential reflects the amount of activation the unit has been receiving from
other units. All inputs are weighed and combined in a manner srnecified b% the site
functions and the potential function in order to update a unit's potentiaL. A rncre
technical description follows.

A network consists of a large number of units connected to a large number of
other units via links. The units are computational entities defined by:

{q} a small set of states. (fewer than 10)
p "a continuous value called potential
v " an output value, approximately 10 discrete alues

a vector of inputs i1, i, ....in (this is elaborated helov)

together with functions that define the values of potential, state and output at time
t+ 1. based on the values at time t:

Pt+ 1 < ----- P(itPt-0t
q6+j < .- Q(i[.pI.q)

S(t,Pt,q

A unit does not treat all inputs uniformly. Units receive inputs via links (or
connections) and each incoming link has an associated weight. A weight may have a
negative value. A unit weighs each input using the weight on the appropriate link-
Furthermore, a unit may have more than one "input site" and incoming links are
connected to specific sites. Each site has an associated site-function. These functions
carry out local computations based on the input values at the site, and it i., the result
of this computation that is processed by the functions P, Q and V. The noti )n of sites
is useful in defining interesting unit behavior like AND-of-OR or OR-of-AND. Sites
will be used extensively in our solutions. The functions P, Q and V are arbitrar but
in keeping with the underlying p!.'.)sophy of these models, it is desired that these
functions be "simple." The details of the functions used in this paper are presented
in Section 4; only the general form of the computation is needed for the next two
sections.

6
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2. Structure of Knowledge

In developing a framework for representing conceptual knowledge we will
concern ourselves with the internal representation that a cognitive agent ma) have of
the external world. We would like to emphasize that we are not interested in the
external world per se but rather in an agent's conceptualization of the external world.
The knowledge embodied in the internal representation of an agent is highl.
structured and interrelated and is less a collection of "facts" than an intricately woven
fabric of interrelated bits and pieces which fit together to form a conceptual
structure. In this section we will develop a vocabulary to describe the conceptual
structure and to specify the interactions that occur within it. This paper does not
address all the relevant issues and although some important problems are analyzed in
depth some others are merely identified.The framework shares features with other
semantic network and frame based schemes [Bobrow & Winograd 76: Brachman 77:
Fahlman 79: Fox 82: Minsky 75: Roberts & Goldstein 77], but differs from all of
these in several fundamental respects.

2.1 Conceptual attributes

A cognitive agent interprets the external world in terms of certain conceptual
attributes and their values and all of the agent's world know ledge is represented using
these attributes and values. In the restricted context of vision a conceptual structure
may be defined in terms of visual attributes like "color" (with values such as red,
blue, purple), "shape". "size", "texture" etc. Such a conceptual structure may be
extended by including non visual attributes like "weight," "temperature," "odor,"
"location," "utility" and "function" (i.e. use). In addition to the conceptual attributes
mentioned above, typical semantic network relations such as is-a-kind-of, is-a-part-of
is-an-element-of are also considered to be conceptual attributes in the proposed
framework. The distinction between different kinds of conceptual attributes is
discussed in Section 2.3.1.

The explicit identification of conceptual attributes and their values is a crucial
step in extracting the structure of knowledge because all other components of the
conceptual structure are defined in terms of the conceptual attributes and their
values.

Conceptual attributes need not be primitive. For example, a complex conceptual
attribute like "shape" may have finer structure consisting of several conceptual "sub"
attributes such as "length to breadth ratio" or "relations between sub-parts".
Similarly, "physical property" may be regarded as a conceptual attribute in some
domain but may be composed of more specific conceptual attributes like "size",
"weight", "color" etc.

0

2.2 Conceptual Entities

The primary level of organization in the conceptual structure centers around the
notion of conceptual entities. These are labelled collections of coherent <conceptual
attribute, value> pairs. For instance, an entity labelled FIDO may partially consist of
the following <attribute, value> pairs: "is-an-instance-of DOG, is-an-instance-of

,- . -.. . - -' . . -. - . . . .. . .. . ' . -
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ANIMAL. has-body-part LEGS, has-body-pari TAIL, has-coat-type FURR'N ...". The
values of conceptual attributes are conceptual entities and hence conceptual entities
may be arbitrarily complex. This definition does not suggest circularity because
some conceptual entities are grounded in perception. Conceptual entities are like
concepts in semantic networks and will often be refered to as such, furthermore, we
will often drop the prefix conceptual in conceptual atuibutes and conceptual entities
and refer to these as attributes and entities respectively.

Conceptual entities may denote different sorts of things *n the domain such as
objects, categories. events, locations and relations. For instance, conceptual entities
may denote "m% dog Fido", "the color red", "Dog", "Color", "the Sox Phutlies
game", "the concert tonight" or "John's passing of the ball to Leo".

Different classes of conceptual entities ma5 have different sorts of <attribute,
value> pairs associated with them. Thus, physical objects may ha% : atrtibGues
mentioned earlier like "is-an-instance-of'. "has-color", "hashape'" and "has-siz
whereas attributes associated with e~ents ma. be "has-I 'ation", "has-agent", "ha. -

time-of-occurrence" etc.

Since ,alucs of all attributes are conceptual entities, values of attributes such as
location and time are also conceptual entities. Thus, locations like "Harvard Square,""on the table," "between London and Paris." "in m) backyard." are all conceptual
entities and so are time specifications like "5 p.m. today," "tomorrow," "before
dinner" and "15th November 1983."

Relations constitute a major class of conceptual entities. The representation of
relations is similar to that of other conceptual entities discussed above. An argument
of a relation is analogous to an attribute of an object. Thus, the representation of an
.V-arN relation is like the representation of an object which has \ attributes
associated with it. For example, the the two place spatial relation on ma be
characterized as a conceptual entity with two "conceptual attributes": on-top and on-
bottom.

In this formulation, relations are not primary conceptual entities. The information
encoded in relations is expressible as (..:-ribute. ialue> pairs of the arguments of the
relation. For example, the relation on represents information about the location of
both its arguments and this information may be encoded in the alues of the
conceptual feature location of the arguments. Among other things, relations provide
an alternative means of structuring knowledge and ma, be viewed as "inversions" in
that the% provide a waN of expressing information which is not object centered. The
inserted representations make it easier to perform certain inferences.

2.2.1 What distinguishes a conceptual entity

Although any possible collection of <conceptual attribute. value> pairs is a
potential conceptual entity, onli explicitly labelled collections are conceptual entities.
Which collections of <conceptual attribute, value> pairs will be grouped together to
form conceptual entities will depend on the domain being modelled and more
importantly. b. an underl) ing theory of learning or concept formation. We ',,ill sa%
more on this in Section 5.4.

S' , .' " "." - ' - ' -' " . " - - - ... ' i .' . . " i " . . ' '" / " ' ' ' ' " .
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2.3 Conceptual Structure

2.3.1 Properties and Structural Links

Conceptual entities were described above as collections of <conceptual attribute,
value> pairs wherein each (conceptual attribute, value> pair related the conceptual
entity being described to another conceptual entity. Conceptual attributes are
classified into two broad categories: PROPERTIES and structural links. This
distinction is crucial and forms the basis of controlled interactions that may occur
between conceptual entities. Italicized lower case will be used to refer to structure
link names and italicized uppercase to refer to property names.

Structural links provide the coupling between structure and inference. They
reflect the epistemological belief that world knowledge is highly organized and that
much of this structure can be factored out to provide general domain independent
inference rules. Structural links are attributes that have this quality and are used to
provide built-in inference paths. The most representative structural link is the is-an-
instance-of link that is used for "inheritance" in semantic networks. Our formulation
employs an extended notion of property inheritance and includes other structural
links such as the is-a-part-of links used to infer values of attributes such as HAS-
LOCATION, and occurred-during links [Allen 831 used to make inferences pertaining
to time. Each structural link has an associated set of properties that may be inherited
along the link and this information is used to perform inferences.

Properties correspond to the intrinsic features of Concepts and may vary from
domain to domain. When describing physical objects the relevant properties may be
HAS-WEIGHT. HAS-SHAPE and HAS-COIoR, while events may have properties like
HAS-LOCATION HAS-AGENT and HAS-TIME-OF-OCCLRRENCE. Properties roughly
correspond to the notion of "roles" of KL-O\F [Brachman 77], "role nodes" of NETL
[Fahlman 791 and "slots" of FRL [Roberts & Goldstein 77].

2.3.2 Types and Tokens

A Conceptual entity may be classified as either a Type or a Token. Elements of
the physical world that are interpreted as instances by the agent are represented as
Tokens in his conceptual structure. For example, Tokens may represent: "Fido the
Dog", "the table in my office" and "the location that is the top of my table". On the
other hand, Types refer to abstractions defined over Tokens. A Type when
instantiated or individuated maps into a Token but by itself it does not represent an
instance in the external world. Types are summary descriptions that may be viewed
as encoding the agent's belief that there are objects in the physical world that
conform to these description and that these descriptions may be used to make
inferences about objects. Examples of Types are "Apple" and "Dog". Types serve
two important purposes. They help structure and organize the knowledge about
Tokens so that the "quantum" of knowledge remains within manageable bounds and
more importantly, they provide the basis for inductive learning and the encoding of
abstractions.

The is-an-instance-of relation expresses the relationship between Tokens and
Types while the inverse relationship between Types and Tokens is expressed by the
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"is-instantiated-by". Thus, FIDO is-an-inslance-of DOG and DOG is-instantiated by
FIDO. Henceforth, we will user the upper case to denote Tokens and Types.

Contrar to many standard interpretations, our framework does not define a Type
to be a set of Tokens. Both Types and Tokens are conceptual entities and hence ha~c
a similar syntactic structure namely a collection of <conceptual attribute, value> pairs.
One difference is that a value owned by a Type describes Mhe value of a propertiy shared
by a large number of its Tokens. (This notion will be refined in due course). Thus. ttic
Type ELEPHANT may own the value GRAY for the property H.4S-COLOR tO represCnt
the fact "most elephants are gray". However, the Type ELFPHANT may not okn an%
value for the property HAS-AGE because the instances of elephants ma not ha~e an%
characteristic 'alue for this property.

2.3.3 Hierarchies

The process of abstraction need not stop at one --el. Abstractiuons o.er T. pes
may yield more abstract r. pes (or a Type ma- be ci. :ferentiated to produ1C morc
refined Types). This leads to a hierarchical strucrure. In ger:eral, multip'K hierar hic
may be defined over the same set of Tokens. F.r example, a dog is a kind of animal
but is also a kind of pet. similarl. a friend of mine is human, a graduate student.
male. a classical music aficionado and of course a friend. The result of ha%ing
multiple hierarchies is that each Token ma. be related to more than one [ype '.ia the
same structural relation. The formulation deieloped here allows arv. numbLr of
hierarchies to be defined on the underl.ing tokens as long as the resulting structure
is acyclic. An example of such a acvclic stricture is sho'n in Figure 2.1. Note that
DOG is related to rwo Tbpes via the is-an-instance-of relation namc. i, AN\ '1, and
PET. Furthermore, the formulation allovs redundant links thus. besidcs links
encoding "DL.STN is-an-instance- of GOLDE-RETRI.\ ER", and "a GOt I)n\-
RETRIEVER is-instantiated-bv DOG". there is also a link encoding "I)LSI ' is-c,.
instance-of DOG". Redundant links pla% an important role and the moti'ation ft.r
including them is explained in [Shastri 84].

The hierarchies are not limited to those defined b% the relatiogn is-an-insta'c. -of
Other structural relations lii s-a-par-;,f and is-a-meenber-of also define hierarchies
over the tokens. These hierarchies diffe: in the nature of inheritance that ma. occur
along them. This issue was addressed earlier in Section 2.3.1.

2.4 A representational notation

We will employ a graphical notation in order to present the role of e idence in
the representational framework. Figure 2.2 displays a sample network encoding the
following information: "Fruits are a kind of Things. Apple ic a kind of Fruit, Things
have the property color, Apples are generally Red or Green dnd Red and Green are
instances of Color". Arcs in the figure are simplified representations of links: F igure
2.3 shows some of the links in greater detail. There exists a simple mapping betmeen
networks depicted in this section and the actual connectionist network
implementation is described in Section 4.

The representation uses three kinds of nodes: the Type node. the Token node
and the Binder node. Type and Token nodes label collections of <attribute. %aluc>



pairs. While properties and values are accociated to Concepts via Binder nodes,
structural links are encoded directly as links. The framework permits associating
properties as well as property values with concepts. For example, the binder node bl
in the above network associates the property of having color with Things (and hence
Fruits and Apples) without specifying any particular color values. On the other hand
the Binder node b2 represents "the value of the property color for Apples may be
Red" and also "something that has color Red may be an Apple". The interpretation
of b3 is analogous to that of b2 with Green replacing Red. The interpretation of
node b4 is slightly different. It represents the uncertainty in the system's belief that
"Apples can only be Red or Green". The exact interpretation of the notation requires
taking into account the weights associated with links.

A weight - in the range of 0.00 and 1.00 - is associated with each link and
provides the basis for an evidential semantics of knowledge. With reference to Figure
2.2 the weight W1 on the link from b2 to RED is a quantitative measure of the
evidence provided by the fact "an object X is an Apple" to the fact "the color of x is
Red" and similarly, the weight W4 on the link from b2 to APPLE is a measure of the
evidence provided by the fact "the color of an object X is Red" to the fact "X is an
Apple". The weights W2 and W5 have a similar interpretation for the relationship
between Apple and Green. The abo~e information may be represented in a symbolic
notation such as:

EUHAS-COl.OR REDI APPLF) = WI
E4APPIIE HAS-COLOR REI) = N"4.
FAHAS-(OI.OR GREENI APPI.) = N,2
FAAPPFI. HAS-COlOR GREEN) W-5.

The weights are not independent. For instance, the weights on links from Binders
that relate RED to Concepts that are red in color should add up to 1.0 and similarly.
the weights on links from Binders relating APPLF to its various color alue nodes
should also add up to 1.0 (Wi + N2 + W3 = 1.0 ). The weight W3 is a measure of
the "ignorance" or "uncertainty" in the information about Apples and their color
and is equal to: 1.0 - (W1 + W2). W6 is equal to W3 but encodes negative evidence for
APPLE which comes into play only if the value specified for color is neither Red nor
Green. If no color value is specified or if the specifed value is Red or Green, the
negative evidence is disabled.

We would like to point out some salient features of the representation.

i. Necessary properties and sufficient properties: The weights on links
from owners to binders provide a mechanism for encoding the differences in
the strength of the generalizations represented by a Type. Consider the
following assertions about Types and properties.

a) Hexagons have six sides.
b) Dogs have four legs.
c) Birds fly.
d) Apples are red.

a) and b) are examples of assertions with the highest evidential weights.
followed by weights of assertions c) and d). In particular, a) is a statement

I
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about a necessary property of hexagons. The use of negative evidence permits
the representation of necessary property value. Because a hexagon necessaril.y
has six sides, a) will be encoded as EHAS-NUMBER-OF-SIDES 61 HEXAGON) =
1.0 and hence HEXAGON would recei'e an extremely high negative evidence
if the object under consideration does not have six sides. The representation
also permits representation of sufficient conditions. Imagine that being blue is
a sufficient property of blueberries i.e. "if something is blue then there is
complete evidence that it is a blu, berT" (or equivalently - the only blue
things in the domain are bluebemes) then this may be represented as
E(BILEBERRIES HAS-COlOR BI.UE) = 1.0.

ii. Multiple property values: In the example discussed above (cf Figure
2.2) Apples could be red or green in color and the representation of the value
of the property H.4S-COLOR for the Type APPLE accounts for both these
colors. If the conceptual structure of the .agent is such that red is a more
typical color of apples than green, then %I will be greater than w.2.

iii. Distinction betw,.cn Property and Value: The representation includes
a node HAS-COLOR and a node COLOR. Thewe two represent two di., nct
aspects of the knowledge encoded in the network. The node H.A.S-(oliJR
represents a property whereas the node COLOR represents a Type whuse
instances may incljde WHITE. BLUF RED etc. each of which could be a %alue
Of H.4S-C)I OR.

i%. Scope of Properties: Properties are inherited in the same wa\ as
propert values. Once a property is associated with a Type it gets associated
with all Types or Tokens that occur beow the Type in the is-an-insta,'e-of
hierarch\. Furthermore, a Type or Token may own a value for a propert%
only if the prop is owned by itselI" or by a Type higher up in the is-an-
instanc -ofhier, n.. For instance, AMPI.E ma own a %a]L.c for H.4S-COlOR
because that property is owned by Rt I which is a super-ype of APPI V.

2.4.2 Representation of exceptions

In standard representation schemes. attaching a %alue VI for the property P1 to a
Type TI is considered equivalent to declaring:

vx ' PE(x, TI) = > Pl(x, VI),

for instance, vx UYPF(x, APPLF) = > COLOR(x, RED)

The representation of a Token of 'I which does not agree with the value of the
4 property P1 causes problems. This problem is referred to as the problem of

exceptions and cancellation in Al [Fahiman et al. 81; Brachman 82].

There would indeed be a problem if one were to interpret the following two
assertions together:

1) vx TYPE(x, TI) => PI(x, VI)
2) TYPE(A. T1) & PI(A. \'2)

I
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3) vi I V2

There cannot be any satisfactory interpretation of these two statements: they are
simply inconsistent. (Assuming Pl(x,y) => (Vz Pl(x,z) => z=y)).

The explicit distinction between Types and properties and the evidential
semantics of knowledge provides a natural representation of "exceptions" and gives a
clean semantics to the is-an-instance-of link. In this framework, all exceptions are
stated in terms of property values and not Type memberships. Thus, either a Token is
an instance of a Type or it is not and the is-an-instance-of link states this
unequivocally. (The same applies to subTypes and superTypes).

The evidential framework allows the representaion of a range of
quantifications" - universal quantification being a limiting case, and at the same

time rules out "genuinely" meaningless statements. In this framework, one cannot
both say,

"All Swans are white" and
"Giselle is a Swan whose color is Black".

However, one may say,

"Most Swans are white" and
* "Giselle is a Swan whose color is Black."

The following example illustrates the wa exceptions are handled:

Let us assume that SWAN is a Type represented in the conceptual structure and
that one of the abstractions it encodes is: "all Swans are white" i.e. "if something is a
Swan then there is absolute evidence that its color is white". Figure 2.4 depicts SWAN
along with an instance HANSA - notice that the weight from bI to WHITE equals 1.0.
If a new instance (Giselle) is introduced such that all its properties match those of
SWAN except that it is black, the network modification rules will have to choose
between three alternatives: (1) lower the weight W1 thereb) redefining Swv.\ and
attach the new instance below SWAN, or (2) classify the new instance as something
other than SWAN and represent it separately, or (3) split SWAN into subTypes on the

. basis of the propert) HAS-COLOR and attach the instance to the appropriate subType.
The first case corresponds to representing exceptions and is illustrated in Figure 2.5.
The crucial point is that GISEILE may not be attached as an instance of SWAN unless
the weight of the link from bl to WHIIE is reduced to a value less than 1.0.

* Not making a distinction between properties and Types leads to very unusual
cancellation of IS-A links to handle exceptions is symptomatic of this confusion. For

a discussion of these problems see [Brachman 82].

2.4.3 Types and Prototypes

Use of weighted links leads to an interesting consequence. What would happen if

0



the network were to "imagine a Type". For a moment assume that this i- ... in to
activating the Type node and letting acti~ation spread to the binder nodc.. The
weights on the links from owners to binders will select the most typical values of
each of the properties owned by the Type (it is reasonable to assume that typical
values have higher weights than less typical ones). Thus, the resulting "mental
image" of the imagined instance of a Type will correspond to a maximally typical
instance of the Type (not necessarily an actual instance). This observation suggests
that treating links between owners and binders as weighted links does away with the
need of storing exemplars, and prototypes in the representation of Types in order to
explain certain behavioral results. The representation of a Type does double duty
and acts as if were a prototypical representation besides being an abstract
representation of a class of Tokens.

2.5 Evidential Basis or Categorization (Recognition)

In Section 2.4 we had observed that %eighted link, provide a mechanism l)r
discriminating between different levels of confidence n the generalization, made b-.
Types. In this section we consider the ob-rvse namel, cgorizing an occurrenL,-
(assigning a Type to a collection of <properit. %-alue> pairs) on the basis of thc
property values.

It is possible to make the process of categori.tion entirely sxmmetrical to the
process of retrieval by using the weights on links trt-m binders to o-k'.ers. A ith the
weights taken into account, a match betmeen the propert %alues of a .)ken and the
property values of a Type can be assigned a metric. This process may be describcd as
that of collecting weighted votes: each Type receies some "evidence" from its
binders if a value of the Token's property matches that of the Type's. This evidence
is combined and each Type ends up with a quantitative measure for the goodness of
its match with the Token. The Type with the highest number wins. Furthermore, the
metric can be used to explain what is meant b\ a Tcen bein a stereotypical or
prototypical instance of a category. If a Token has property %alues that match the
most of the typical values of the Type then this Token appears to be more
stereotypical. Ihis is a simplified version of the visual categorization model presented
in [Feldman 82b]: this paper supplies the elaborated semantic net model premised
there. In terms of Rosch's work on prototypicality [Rosch 75; Smith & Medin 811. a
Robin matches most of the properties of the represeratien of the Type Bird %hereas
a Penguin matches only a few.

2.6 Representation of Relations

Figure 2.6 is an example of how relations are represented. The network encodes
the following information:

"ON is a kind of spatial relation
ON has two arguments: the thing on top and the thing at the bottom
A is a ball and B is a cube
A is on B".

Notice that the representation of relations is similar to that of other conceptual
entities like APPLE and PEAR. An argument of a relation is analogous to an attribute
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of an object. Thus, the representation of the two place relation ON is characterized as
a Type with two "properties" (arguments): on-top and on-bottom.

Many relations such as PARENT-OF and ON either hold or do not hold. However,
there are many relations that are best viewed as graded relations. An example of this
kind of relation is LIKE: as in "John likes Mary". There are two ways in which a
degree of strength may be associated with the representation of such relations. First,
"liking" itself may have a degree of strength associated with it, John may "like Mars
a lot" or "like her just a little". Second, an agent's belief in the various degrees of
John's liking of Mary may also vary. Thus, one may strongly believe that "John likes
Mary a little". We believe that the evidential framework will be suitable for
representing such distinctions. We intend to pursue this issue in the near future.

I
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3. Inference in memory networks

Section 2 described a notation for representing knowledge and also provided a
partial specification of active networks capable of performing limited inferences on
the information represented in them. In this section we define the inferences
computable within these networks and describe how these can be extended by the
use of routines.

Controlled spreading of activation provides the basis for the built-in inference
mechanisms in our networks. As was described earlier, a major feature of these
networks is that unlike conventional semantic networks, they are not accessed by an
interpreter. Consequently, the limited inference mechanisms have to be hardwired
into the network and this makes these networks more complicated than typical
semantic networks. In order to keep the exposition clear, we will introduce the
additional machinery needed to control the spreading of activation as the need arises.
The method we have adopted is that of presenting a number of examples that
illustrate the various mechanisms involved. The discussion of the exact rules
governing the spreading of activation is postponed until Section 4.

As discussed in Section 1, questions for the Memory Network arise from routines
and the answers are assumed to be conveyed to Answer Networks which form part of
the routines. We will first specify the types of queries the Memory Network can
answer and then describe the mechanism for posing a query to and receiving an
answer from the Memory Network.

3.1 Nature of Queries

The questions to the Memory Network are framed in terms of conceptual entities
(concept), conceptual attributes (attribute) and the values of conceptual attributes.
There are three classes of basic queries that may be posed to the network:

Class I Queries:

These queries specify a concept and one of its attributes and seek the value of the
specified attribute for the concept. An example of such a query is, "What is the taste
of Ham". For the sake of brevity and uniformity we will express all queries of this
class as ?v ( o a ), which may be read as - "What is the value of the attribute a of the
owner o. Thus,

"What is the taste of Ham" becomes -
?v (HAM HAS-TASTE).

"What is the color of an Apple" maps to -

?V (APPLE H,4S-COLOR)

As another example, consider the query:

"What is the nose a part of", which is expressed in this notation as,

6'
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?v (NOSE is-a-par-ofi.

Class 11 Queries:

These queries specif. one or more attributes aong, with their values and seek an
entity that best matches this description. In o., no.ation these queries are expressed
as ?o { (a v) 1, which may be read as - "Which object o is described by the following
attribute value pairs {(a v)}. Some examples folloA:

"Find a red fruit" ->
?o { (is-a-subiype-of FRUIT) (HAS-COLOf, RED) }

"Name an animal that flies, is white and quacks" ->
?o { (is-a-kind-of ANIMAL) (HAS-AwDE.D-0' f.,('.!OTION FL.YING) (H.4S-
COLOR WHITE) (H,4S-SOUD "quack-quack-) }

Class III queries:

4 Class III queries seek the attribute that corresponds to an attribute %alue of an
entity. These queries are represented as ?2 4-o s). For instance.

"What property of Apple has the %alue Red' ->

?a (APPI F RFD)

Queries as multiple choice questions

In this formulation we will assume that all questions posed to the memory
network are multiple choice questions. For the .purpose of tis paper this n t be
treated as a restriction on the kinds of queries that zhe network can answ er. A w ide
variet% of access to the network essentiall- consiss of deaing A ith multiple choice
questions in the sense that the process of accessirg the inforr'ation in the network
may be -iewed as selecting the best among a set of hypotheses on the basis of the
evidence provided by the network and the query.

Besides including the choices specified in the question, the bcz of hypothesis
being evaluated explicitly includes two additional choices that correspond to the
answer "do r..t know". The additional choices are:

1) "unable to pick a clear winner because of conflicting evidence"
2) "unable to decide because none of the hypotheses is receiving supporting

evidence".

The idea of an explicit set of answers fits in well with the routine networks
described in section 1 (recall the use of [yes] [nol nodes in the example routine
shown in figure 1.1). The use of "do not known option allows us to explicitly account

4 for uncertainty and is compatible with our evidence theory treatment (Section 5.1).
Section 3.4 describes how the "do not know" response may be used for controlling
inference. Some situations may require handling questions that are not multiple

4 1
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choice; such cases are discussed in Section 5.2.

In the light of the assumption that all questions are multiple choice, all queries (at
least implicitly) include an enumeration of the possible answers. Thus, the queries
corresponding to the above examples would look like:

?v {SALTY SWEET SOUR} (HAM HAS-TASTE)

?v {RED BLUE GREEN} (APPLE HAS-COLOR)

?v {CHEST TORSO FACEI {(NOSE is-a-part-of)l

?O {APPLE PEAR BLUEBERRYJ {(HAS-COLOR REDX is-a-kind-of FRLI'I )j

?o {SWAN DUCK ELEPHANT} 4(is-a-kind-of ANIMALXHAS-COLOR WHITEXHAS-
SOUND "quack-quack")}

?p {HAS-TASTE HA.V-SHAPE HAS-COLORI (APPLE RED). 2

3.2 Query interface to the memory network

We now describe how routines pose queries to and receive responses from the
Memory Network.

Queries originate from hexagonal nodes in routines called Query nodes. Each
Query node is connected to the appropriate nodes in the Memory Network. If the
routine includes roles that need to be bound during execution, the links between the
Query nodes and the appropriate nodes in the Memory Network are established kia
the Role Network. When a Query node is activated it sends activation to all the
nodes it is connected to.

The multiple choices that make up the possible answers to the quer are encoded
within the routine in the form of a WTA network and are referred to as the ,nswer
Network. These networks contain a node for each of the possible responses to the
query and two special purpose nodes called the [?-conflict] node and the [?-no-infol
node. The Answer Networks are designed such that the [?-conflict] nodes win the
competition if there is a lack of decisive evidence and none of the possible responses
is a clear winner while the [?-no-infol nodes dominate the competition if none of the
possible responses are supported by the Memory Network.

The overall behavior of the knowledge representation system is a result of theinteraction between the nodes in the routine, the Role Network and the Memory
Network. Figure 1.3 depicted this interaction crudely, and we will now present it insome detail.

Consider a routine that decides whether some food goes well with red wine. One
may imagine such a routine to include the following query: "Which of these best
describes the taste of the food: Sweet, Sour or Salty"? The above routine fragment
includes a role "food" that gets bound to the appropriate food item when the routine
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is invoked. For instance, if the routine were to be inoked to decide "Docs Ham go
well with red wine"?, the role "food" would get bound to "Ham" % ia a d% namic link.
The connections are depicted in Figure 3.1 which we explain below.

As instantiated in this example, the quer. encoded in the routine is of the form
?i (SWFH SOL R SA:LH I (HAM H.-s-T4STE). This is encoded by direct links from
the Query node TASTE-OF-FOOD in the routine to HAS-TASTE, O-ENABLF and P-
ENABLE nodes and via dynamic links to the Hmm node (the function of the enable
nodes is explained below). Following the Quern node, the routine include, an
Answer Netork with a node assigned to ewh of the three candidate responses.
SWFFI. SALTY and SOUR (as a matter of conkention. we will label these units r-
SWFEI, r-SA:\l"), and r-SOLR). The nodes thus assigned fc connected. one to o,,.. to
the nodes representing the entities SV -HA. S\. 1"V and SO;- R in the Memory Netw,,rk.
These links are directional and the actisaucnr flo'us from nodes in the Memor\
NetwAork to nodes in the Answer \etwork. Vnme lauer accumulate actikation arriPing
fri:n the Memory Network and compete %ith each other to decide on the correct
answer The first node in the Ansrer \evmork to cross a preset threshold is
considered to be the ans"er As -, plained ear.]lei. the Answer Network also include s
the ["-conflict] and ['-no-infoj rdes and an, of these ma. dominate tinder the
specified conditions.

3.3 Infervnce in the Memory Network

We now present examples that illustrate the inference process. The d.nam*,, of
these networks and the sOmputational details pertaining to the implementatiuoi of
these mechanisms are descnbed in Section 4.

Example I

As the first example wke consider the quer):

?vI{SAEEr SAIT) SOLR (F-\M HAS-I.4STt-)

We have seen the waN this query is set up in the netwkorks in Figure 3.1. To see
how the quer. is processed we need to exaj,,e the functioning of the triangle
shaped binder nodes such as bl and b2 and the rectangular nodes representing
conceptual entities (cf. Figure 3.1).

Each binder node associates an owner with a property and a %alue. There is a
unique binder node for each such triple represented in the MemorN Network. Each
binder node has three sites named o, p and % ,hich receive inputs from the owner.
property and the value respectivel. Each site also has an enabling input which must
be on for the input to register at the site. The three enable links are called o-enable.
p-enable. and v-enable. The enable links are controlled bN three global units named
O-ENABLE P-ENABI.T and V-ENABLE - one for each kind of enable link. On being
activated, each of these "global" units turns on a!' the enable links it controls.

A binder unit is normally in a latent state but becomes active if it receives
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coincident activation at two or more of its sites. On becoming active it transmits
activation to all the three nodes connected to it. (These are the same nodes that send
activation to the binder node). It should be noted that like any other node, the
binder nodes also maintain a continuous valued potential which builds up in
response to the activation arriving at various sites of the unit and the output of these
units is proportional to their potential. Figure 3.2 summarizes the computational
behavior of binder nodes. The binder nodes are similar to those proposed in [Hinton
811.

Binder nodes that encode ignorance and provide negative evidence to conceptual
entities behave slightly differently. These nodes become active if the enable signal at
site v is on and site p is receiving input from the property in presence of the enable
signal. On becoming active these nodes send negative evidence to the associated
conceptual entities.

Each rectangular node accumulates the activation it receives from other units and
saves this value in the form of a potential. It also sends out activation proportional to
its potential to all units connected to it. The rectangular units have multiple sites,
some of which are mentioned belovw. Each rectangular unit may have sites for:

inputs it receives from all binder units of which it is the owner,
inputs from all binder units of which it is a value,
inputs from all binder units where it is the property and
inputs from structural links.

The detailed information about enable links and multiple sites will not be
displayed in the figures in order to improve readability.

With this introduction we may now describe the steps involved in the processing

of the example query: "What is the taste of Ham" i.e.

?v {SALTY SWEET SOUR} (HAM HAS-TAST[)

1. The units HAS-TASTE, HAM. P-FNABIF and O-FNABI E are activated.

2. The activation spreads and results in the node bl (cf. Figure 3.1) becoming
active as two of its sites - o and p receive simultaneous activation (along with the
enable signals).

3. bl in turn activates SALTY.

4. In the next few time steps, the potential of r-SALTY builds up and as there is
no competition it soon reaches a high value indicating that the answer to the query is
SALTY. A trace of the potential of selected units is shown in Figure 3.3.

The following five examples are based on the Memory Network shown in Figure
3.4. (The links from the property node HAS-COLOR to the various Binder nodes and
the enable signals are not shown in the figure). The information encoded in the
network may be summarized as follows:
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"Apples, Pears and Blueberries are three kinds of Fruits. Apples are -enerallh
Red or Green, Pears are generally Green and Blueberries are Blue. Most Red things
are Apples, most Green things are Pears but some are also Apples and all Blue things
are Blueberries. MAC6 and YE.2 are two instances of Apples".

In terms of the evidential semantics the information encoded is as follows:

E(HAS-COI OR REI)I APPLE) = 0.45
E(HAS-COLOR GREEN' \PPLF) = 0.25
E(HAS-COLOR ? I APPLE) = 0.30
E(HAS-COIOR GREENI PEAR) = 0.85
E(H.4S-COLOR ? I PEAR) = 0.15
E(H.4S-COLOR BLUEI BLUEBERRY) = 0.99
E(HAS-COLOR ? I BLEBRR) = 0.01
E(HAS-COL.OR YEIIOW YE.2) = 1.0

and

E(APPLEI HAS-CO1OR RED) = 0.70
E(APPLEI HAS-COIOR GRFFN) = 0.40
E(PEARI HAS-COH)R GRE-EN) = 0.60
E(BIUEBERRY1 HAS-COIOR BLU) = 1.0
E(YEL21 HAS-COLOR "F I lOW) = 0.50

For each of the following fine examples Ae %till state the query. list the nodes in
the Memor) Network acti'ated b it. specifN the structural links that it enables and
trace the potential of a select set of nodes.

Example If

Query" ?i {RED GREEN BL+ YEI.OW} (MAC6 H.AS-COLOR)

Nodes Actibated: HAS-COlOR. MACb. P NABLE and O-NABI F.

Structural Link enabled: is-an-instance-of
Response Nodes: r-RED r-GREEN r-BLLE r-YEI.LOW [?-conflictj [?-no-info]

Figure 3.5 traces the potential of the nodes: APPLE, the four instances of COLOR

and the corresponding nodes in the Ansver Neti ork. In brief, the actiation moves
up the is-an-instance-of link to APPLE. Now both bl and b2 become acti'e and send
activation to RFD and GREEN. The stronger evidence for RED results in its
dominating GREEN in the Answer Network.

Example IlI

In this example we demonstrate how information about exceptions plays a role inretrieval from the Memory Netmork.

4j-
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Query: ?v {RED GREEN BLUE YELLOW} (YEL2 HAS-COLOR)

The only difference in this query and the previous one is that YEL2 is activated
instead of MAC6. The potentials of selected nodes is plotted in Figure 3.6.

This example illustrated how the dynamics of the network behavior causes the value
of a Token's property to override the value stored at the Type. The computation of
exception was affected by two factors: strength of evidence (the higher evidence
from YEL2 to YELLOW compared to that from APPLE to RED and GREEN), and the
proximity of information (the Binder local to YEL2 became active before the Binders
associated with APPLE). In our framework the structuring of knowledge is an integral
part of the evidential semantics and neither of these may be treated in isolation. The
structuring affects the dynamics of spreading activation and hence the computation
of evidence.

Example IV

Query: ?o {APP[.E PEAR BLUE-BERRY} {(HAS-COIOR BI.LFXis-an-
instance-of FRUIT)}

Nodes Activated: HAS-COLOR. BLUE. FRUIT. P-ENABLE. V-ENABLE

Structural Link enabled: is-instantiated-by

Response nodes: r-APPLE r-P-AR r-BLUEBERRY [?-conflict] [?-no-info]

This is an example of a Class 11 query. All instances of FRUIT receive activation
along the is-instantiated-by links. BLUEBERRY gets additional evidence from b6 while
APPI.E and PEAR get negative evidence. Notice that PEAR decays faster than APPI.E.
This is because the uncertainty about the color of PEAR is less than that about the
color of APPI- and hence PEAR receives more negative evidence. The plot of the
potentials of the relevant nodes is shown in Figure 3.7.

. Example V

Quer: ?o {APPLE PEAR BI.UE-BERRN I {(HAS-COLOR RED}is-an-
instance-of FRUIT)l

Nodes Activated: HAS-COLOR. RED. FRUIT. P-ENABLE. V-ENABLE

Structural Link enabled: is-instantiated-by

Response nodes: r-APPLE r-PFAR r-BLUEBERRY [?-conflict] [?-no-infol

The plot of the potentials of selected nodes is shown in Figure 3.8. The difference
between this and the previous example is that the evidence from RED to APPLE was
not as strong as that from BLUE to BILUEBERRY. As a result the time response of the
network was slower in this example.

S
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E-ample VI

Query: ?o 4APPLE PEAR BLUE-BERRY1 {(HAS-COLOR GRE:N is-
an-instance-of FRLIT)}

Nodes Activated: HAS-COLOR, GREEN. FRL'IT, P-ENABLE, V-ENABLE

Structural Link enabled: is-instantiated-by

Response nodes: r-APPLE r-PEAR r-BLLEBERRY [?-conflict] [?-no-info]

In thi. example APPLE and PEAR compete with each other because both receive
evidence from FRUII as well as their color value binders. PEAR reaches threshold
first because GREEN provides more evidence to PEAR than to APPLE. This is e'idertt
from the plot of the potentials of these nodes shown in Figure 3.9. The behavior of r-
APPLE and r-PF-.AR nodes during steps 11 through 15 reflects the competition betweer,the t-_ nodes and the emergence of T-PEAR as the winner.

To illustrate the role of the [?-conflict] node we modify the Nlem -1% \Liv_,ork 1i
Figure 3.4 so that the e~ldential weights on links from GREEN to -\PP [ and P-.\R
becom., relati'el, similar. Specifically, we set:

E-\PPEFI HAS-COIOR GREEN) = 0.45
and E(PFARI H.IS-COIOR GREEN) = 0.55.

We no%% pose the same query to the modified network and trace the bel-a ior of
..he Answer \etwork nodes. The potentials of the relevant nodes are plotted in
Figure 3.10. The [?-conflict] node gradually gains potential as neither r-PFAR nor r-
-XPPI.F are able to dominate.

Example VII

This example demonstrates inheritance along a structurai link other than the is-
instantiated-by link. The Memory Network in Figure 3.11 encodes the following
information:

"Eents represent a Type of conceptual entity.
Eents hale the properties, location and time of occurence (besides others....).
I broke my arm during my first year at college.
I entered college in 1974."

Assume that the query is:

"In which year did I break my arm?"

?11972 1974 1976} (HAS-TIM. L-OF-OCCURRENCE BREAK-ARM)

The Quer Network and the Answer Network might be set up as shown in
Figure 3.11.

: . .. . . . . . . . .. . - . - . .. . .. . -. , . . . . . .. . .. . . . . . • . , . . . . . . . . .-. . '
-'-. - . -. -. - -. - ° - ? " -_,." . .. . . , " .. . _ . ,- .. . -: '." . " , -- ,'- -. .. . , ,' . ,.
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It was observed in Section 2.3.1 that each structural link is appropriate for the
inheritance of certain property values only. An example of this is the inheritance of
the value of the property HAS-TIM F-OF-OCCURRENCE. The value of this property
may be inherited by moving up the occurred-during links. The routines encoding a
query about the the time of occurrence of events will enable the occurred-during
links if necessary.

The example Query activates the units HAS-TIME-OF-OCCURRENCE, "I-broke-
arm", P-ENABLE and O-ENABLE. It also enables the occurred-during structural link.

The activation moves along the occurred-during link and activates "My first year
in college" unit. The binder unit b1 becomes active and sends activation to "1974"
which in turn supports r-1974. Finally, r-1974 reaches a high degree of activation and
this completes the processing of the query.

Example VIII

As the last example of this subsection, we see how the question, "is Dick a
Pacifist" answered by a network which encodes the assertions. "Quakers are
Pacifists", "Republicans are non Pacifists", "Dick is a Quaker" and "Dick is a
Republican". The Memory Network in Figure 3.12 encodes the above information.
The weights %%, and w2 encode the strengths of exidence E(HAS-BELIEIS PACIFISTI
QUAKER) and E(H.4S- RE! IES NON-PACIFISI I REPUBLICAN) respectively. Needless
to say, the encoding is an simplification but the claim is that it brings out the fla~or
of the manner in which such information is encoded.

Query: ?i (non-PACIFISI PACIFIST) (DICK HAS-BELIEFS)

Units activated: The Quer. activates the units DICK. HAS-BEI lEIS P-
ENABILF and O-ENABLE.

Structural Links enabled: is-an- instance-of.

Response Units: r-PACIFIST r-non-PACIFIST [?-conflict] [?-no-infoj

The activation moves up the is-an-instance-of links to QUAKER and REPUBLICAN
units and both PACIFIST and non-PACIFIST receive activation in proportion to the
weights wl and w2 respectively.

An example trace with a particular choice of weights is shown in Figure 3.13.

3.4 Routine-based Inferences

The previous subsection showed how a number of different kinds of basic
inference could be captured within the connectionist semantic network. By
augmenting these mechanisms with routine-based rules of inference, we can greatly
extend the class of inferences supportable by the system. Although we will not press
any claims at this time, it appears that the current mechanisms can handle any chain
of inference that does not require backtracking (cf. Section 5.2).

• . . . . .. . .. . . . . . . . i~
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We have already used routines in several important ways in iniCrencing.
Questions w~ere assumed to arise from, and answer networks to reside in routines.
The question nodes provided simultaneous activation to the parameters of th,. quer
and to the appropriate FNABI' nodes for binders and for structural links. The
role-concept dynamic-link binding network was not stressed, but provides the
system with its basic ability to handle variables. subromuines etc. The answer network
mechanism can also be extended and we will do this first because it is simple.

The major addition to our previous treatm-ent of answer networks is to account
explicity for indecision. Suppose, in the luncheon script of Figure 1.3. the special is a
burrito and our hero doesn't know if he likes them or not. This ,ould lead todomination by the [?-no-info] node in the \NA of the Answer network. The a- -

[?-no-infol] can, like any other answer, lead to subsequent routine actions. Figur- .
depicts a situation where insufficient information leads to the enabling of i.-,I
subiype-of links in the case that was not part of the original quer\. This also suggests
how the mechanisms described here can be used to pro ide %aring degrees of
control o~er spreading activation in semantic networks. It turns out that the explicit
[?-no-info] node also plays an important role in our evdcnce theor% as discuss-d in
Section 5.1.

Another use of routines is to access the relational know, ledge encoded in the
semantic network. The example in Figure 3.15 -extends the luncheon routine to
include a check against one's supper plans before ordering the special. The new node
[conflict %kith supper?] works b. simultaneous!), acti~atirig the roles [sp.,ial] and
[supper] and the relation name [not on same daj]. This (in a few steps) would cause
activation of [instance 62141 ,hich is a positive instance of conflict bctween tbods
and thus linked into the r-.,es node in the routine. Simnilar mechanisms Aill work fr
an% quer. of the form R(A.B) where an of R. A. B can be variables (roles) bounc.
particular concepts. Another routine could proude acti~ation to e.g. all foods ti. at
shouldn't be eaten after ham b% activating tham). tfir-i1. and [not on same daJ to get
instances active and then activating [secondl and (not on same daj] to ro.ite
actixation to foods such as [pork]. We ha~e not %et said how one could the,. niake
use of this diffuse activation in the network (cf. Section 5.2).

Another question that might arise is how the binding [supper-porkl came about.
It could be that the biring remained from morning as a kind of intermediate term
memor), but would ,l handle a restricted set of cases. Figure 3.16 suggests a
general way that such a binding might be computed b% an embedded (sub)routine.
The important point for us is that the [role-concept] mechanism provides a natural
wa of linking together routines, quite like the binding mechanisms in logic or
programming. The (somewhat fanciful) routine in 3.16 has our hero employing the

* strategy of imagining the situation (cf. [Feldman 82b]) of his kitchen that morning
and focussing on the traditional defrosting counter.

This class of problem has not been worked out as carefully as some earlier
examples, but the basic ideas are similar. Actiation of the appropriate situation nodc
and relation query would lead to activation of the appropriate unit in the network.
The difference here is that the "answer" is being used to establish a binding in the
role network of supper - pork. There would hase to be enabling links to facilitate
such bindings, but this is straightforward. The general idea is that anN route network

0" ' " "--L ..-> , , -: .._" .. .2 ." .._. _., ._ " . ; . ~:• i. . . . • . .i
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can both take and return role - concept bindings, significantly broadening the range
of inferences computable with our networks.

The use of multiple role-concept bindings in a routine gives rise to a
computational problem that is particular to and ubiquitous in connectionist models
[Feldman & Ballard 82]. By depending on parallel spreading activation, we become
subject to the possiblity of false coincidences or cross-talk producing false responses.
This is particularly tricky since a role can be occupied by different concepts, but the
knowledge is all encoded by concepts. An example situation is one where John loves
Mary, Mary likes John and John has been transferred. We suppose that this event
makes John sad and Mary relieved. The technical problem here is that the roles of
John and Mary could be reversed and the mechanism must support either binding.
The routine fragment of interest simply activates [loser is sad] and [lovee is relieved]
sequentially. Each person is assumed to have several affective states including
[happy], [sad] and [relieved]. Consider the spread of activation caused by the first
action of the script. Activating [loser is sad] causes activity to spread to the [sad] node
of everyone, including John and Mary. At the same time. the [lover] role in the
dynamic link network is triggered and this causes activation of [John]. This, in turn,
activates [John's affect] and all its possible values. No% in the entire SN, there is only
one unit -- [sad] of [John's affect] -- which is receiving coincident activation. We
assume that this coincident activation raises the potential of John's [sad] unit: this is
the mechanism proposed for capturing the sadness of John in our SN.

The second action [lo~ee is relieved] \ill, of course, lead to coincident activation
of the [relieved] node of MarN. It is important to notice that it is not possible to do
these two actions in parallel. If both [lover is sad] and [lovee is relieved] %ere
simultaneously activated, then both the [lo'er] and [lovee] roles would become active.
This would lead, for example, to concident activation of the [relieved] node of John
as well as to the desired coincidences. This problem is an instance of the general
crosstalk problem in connectionist networks [Feldman & Ballard 82]. Whenever one
uses coincidence for inference, care must be taken to insure that no false
coincidences arise. This is most often done by sequential execution of separate steps.
The formation of role-concept bindings itself is one such case. At least for our
formulation, sequential processing is required %hene~er bindings are being
established (cf. [Anderson 83]). There are undoubtediy many other problems that \ ill
arise in connectionist inference models: the current section is mainl intended to la.
a framework for a detailed further study of routine inferences.



ROLE:FOOD'-- HAM 4

B2B-

VEG7

OF rNSWER

- NETWORKFIUEK.



PROPERTY

P-ENABLE

TO PROPERTY
O-ENABLE

TO OWNER

TO VALUE

* BINDER UNIT ACTIVE IF TWO OR MORE SITES ENABLED AND RECEIVING INPUT

* UNITS SEND OUTPUT WHEN IN ACTIVE STATE

FIGURE 3.2



~~b 0. 0..j.-

4.

28 4 8 1

SAT

.6

.4

.2bb

2 4 6 8 10

QUR:?8WE SALTY SOR/HMHSTSE

Noe ciae:HM ASTASE SEBE, SOR, r-SETrSU 00

FIGURE'-cnfic 0.0ID H ATEO A



C
-44.
C)E

a OI

CC:

LU-

LLJJ

U- LUCDC

-j --
CC,

CD -0

UlU-

a LU

LLLU

-J

3c-

4.)



1 ----- APPLE

.8 -r-RED

.7 1

.6

.5 I

.4 - ----- RED YELLOV, BLUE 0.D

.2" 3 ri -if /" r-P LUE 0.0

------ - ---- GREEN r-.LLO! 0.0
?-conflict = 0.0

.1 Ir- GREE N
0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 7-'

QUERY: ?V (RED GREEN YELLOW BLUE) (PAC6 HAS-COLOR)

FIGURE 3.5 FIND THE COLOR OF MAC6

1.0

.9-

.8 -- r-YELLOW

.7 -

.6 APPLE--#.,

.5 / BLUE = 0.0

4 YELLOWRE r-BLUE, r-RE2 .

.3 trGE

.2 1 / GREEN ?-conflict C.C

I?-no -info

1 12 3 4 5 6 7 8 9 10 11 12 13 14 15

QUERY: ?V (RED GREEN YELLOW BLUE) (YEL2 HAS-COLOR)

FIGURE 3,6 FIND THE COLOR OF YEL2

S

' '": ":" ::: ~.. . . . . . . . . . -,., .i: .. : ,:, -,.. .: -- - .. ,- :.....- :- - .- - :: '-: -



4 1.0.

9 BLUEBERRY. -

.8, -BLUEBERRY

.7 r-RED, r-GREEN =0
.6,? conflict ,r-APPLE,

5. r-PEAR 0

.3 ?-no-info GOES UP TO

.2 0.12 THEN DECAYS

.1 I (PPLE

0. 0 2__
1 32 9' 10'

QUERY: ? 0 (APPLE PEAR BLUEBERRY) ((IS-AN-INSTANCE-OF FRUIT)
* (HAS-COLOR BLUE))

FIGURE 3.7 [NAME A BLUE FRUIT

1.0.

.9.? conflict, r-PEAR,
.8 r-APPL r-BLUEBERRY=0

*.7- ?-rP~ no-info GOES UP TO 0.12
.6 -- THEN DECAYS
.5 O

.4.

S.3 

-r 

- L

.2-

QUERY: ?0 (APPLE PEAR BLUEBERRY) ((IS-AN-INSTANCE OF FRUIT)
(HAS-COLOR RED)

FIGURE 3.8 NAME A RED FRUIT



1.0

r-PEAF.

.7

.6 PEAR

.5

.4- -- - -- - - APPLE r-BLUEBERRY =0

.3 r-APPLE ?-no-info goes up V~ 0. 15
.2 ~ then decays

.1
A. ,-BLUEBERRY ~?cnlc

0 1 2 3 4 5 6 7 8 9 10 111213 1415 16 1718

E DEAR IHAS-COLOR GREEN' 0.60
E(AP'cLE I HAS-COLOR GREEN) =0.40

QUERY ?O (APPLE PEAR BLUEBERRY) t(i-nisac-fFRUIT) (HAS-COLOR GF.

FIGURE 3.9 NAME A GREEN FRUIT



4-4

00) -

w <I CL
0 C.. I wo IL w

*~ , LLI
La.1 LLJ .

w CD

w CD -J
D 0)-l 0

.- J C>)

C.)

cc I -%

S ~ d<J

C%j U-
0

4 CI C CD

m ID

0 IX
'ILU
I CL

I %

I wJ
* CI5

C* Il C



HAS-PROPERTY

ENALEUNIS OT HONI EVNT

IN COL IGOCURED31K OC~tRED DRING INKSUNABLE



REPUBLICNAQUAKE

DIC

r- on

1A FIGURF3.1
OR~ A NON ANSWE



.8 r-PACIfIST

.6
PACIFISTI 1S

NON-PAC IF IST-~-
.2nf ?-Conf", ,,t

315 20

.e. E(AII~~AE) 0.7

W2 i .e. E ('NON-Pr'.::F-T REPuB:L ICA',,; C

* QUERY: ?V (PACIFIST NON-PACIFIST) (DICK HAS-BELIEF)

FIGURE 3.13 Is DICK A PACIFIST OR A NON-PACIFIST?



Ar

ROLE

SPECIAL-BURR TO

SPECIAL~ -BRRT

FIGUR REGULA

SPCA

APEL

. . . . . . . .*.. * * .- * * .*. -. * .. . . . . . . . . .* . .. . .

. . . . . . . . . . . .. S . E.* * ** *

con . . . . *. * , flict * .

. . * * 4* *no-info.



SUIPPER '-JPORK-

SPECIAL"-' HAMl

621

I REGULAR

?-conflict and N
7 - no-info nodes have not FI(IK 3. 1S: DOES SPECIAL CONFLICT WITH SUPPER

b~een distinguished

L4



TIM

1'F

SUPPERCOUNTERR

SUPPER PORK

TOIH FIURN31

WHA

.................................................... IMAIN



HA FFC

/SA /A IRLEE/A

THE PARTING OF JOHN AND MARY

FIGURE 3.17



4. Implementation details

This section specifies a connectionist implementation of the knowledge
representation and retrieval framework developed in the previous sections. It
describes the computational characteristics of the units in the Memory Network and
routines. General purpose routine networks have not been implemented but the
current implementation can handle all the examples described in Section 3.3. The
problem of establishing dynamic connections for role networks is dealt with in
[Feldman 82a].

We have already described the logical connection patterns in our networks in
Section 3 and will now specify the actual implementation and the dynamic behavior
of the networks, i.e. the rules for the spreading and accumulation of activation.
Spreading activation has been used as a parallel mechanism for propagating
associative relevance over semantic networks [Quillian 68; Anderson 83]. In this work
we have gone beyond this "facilitating" view of spreading activation and developed
mechanisms for using it in a more controlled and structured manner to carry out
limited inferences in active semantic networks.

As was described in Section 1.1, each active element (unit) in the connectionist
framework is characterized by a potential function, a state function and an output
function, each of whose values depend on the current value of the inputs and the
previous values of the potential and the state. The potential function describes the
dynamics of a unit's potential. The potential is a measure of a unit's activation and
roughly corresponds to an integration of the input received by the unit in the recent
past. The state function governs the transitions in a unit's state as a function of its
current state, potential and inputs. The state of a unit controls the way it accumulates
potential and sends output to other units. Finally, the output function describes the
activation propagated by the unit on the basis of its state and potential.

A unit might receive input from a large number of other units. All inputs to a
unit are not treated uniformly. Each unit has a number of input sites on which
incident links impinge. Each site has an associated site function which maps its
inputs into a single value. The potential, state and output functions act on the input
via the values generated by the site functions.

A specification of site functions together with the potential, state and output
functions specifies a unit type (not to be confused with the use of Type/Token in
the representation scheme). Unit types are computationally distinct. Our
connectionist implementation uses five unit types in the Memory Network and six
unit types in the current implementation of routines. These roughly correspond to
the different shapes of nodes used in the pictorial representation of networks in the
previous sections. In what follows we will describe the various unit types in terms of
their site, potential, state and output functions together with the weights used on
links incident on different sites.

Before we proceed to describe the different unit types we specify the general
form of the potential function used in these networks. The function common to
most of the unit types is described below.

-6
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4.1 Potential Function

Each unit in the Memory Network and the Answer Network uses the following
potential function:

p(t+ 1) = Vxp(t) + i(t) x 1.0 - vxp(t)] eq-I

Here p(t) and p(t+ 1) are the potentials at time t and t+ 1 respectively, i(t) is the
input to the unit at time t and v is the decay constant. It is assumed that the input
values and the parameter V range between 0.0 and 1.0. The potential function
returns a %alue bounded by 0.0 and 1.0 and may be interpreted as an approximation
of a "leaky capacitor" %here the potential decays with time and the integration is
"damped" to saturate to a value of 1.0. A low value of V means higher decay rates
and consequently faster dynamics but lower steady state values. This function is a
modification of the one reported in [McClelland & Rumelhart 81] and it has the
desirable property that it does not lead to an oscillatory behavior when the potential
reaches it maximum value of 1.0.

For any constant input I, the steady state value of the potential may be expressed
as

Pss = I / [I x V- 7 + 11 eq-ll

Figure 4 1 is a plot of the steady state values of the potential for diffe.::nt input
values with - set to 0.6. Figure 4.2 plots the time response of the potential function
for various values of inputs held constant in time. The figure also marks the time
taken to reach 90% and 99% percent of the steady state values. In the design
reported in this document V7 was fixed at 0.6.

We now describe the different unit types starting with the simplest of these.
. 4.2 Characteristics of Query Inits

The Query units have two sites - enable and done, and two states - actihe and
inert. The site enable receives inputs from other units in routines while the site done
receives inputs from the Answer Network. A Query unit is initially in the inert state
but switches to the active state on receiving activation at the site enable. While in
this state its potential remains fixed at 1.0 and its output equals its potential. It
switches to the inert state when the input at the site done exceeds a certain threshold
(currently 6.6). -i ne detailed computational behavior of these units is specified in
Figure 4.3.

4.3 Unit types in the Memory Network

The Memory Network is encoded using five distinct unit types. These are:

a) Enable Units: these units enable sites on binder units.

b) Relay Units: these are used to encode structural links.
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c) Binder Units: these act as binders between properties, values and the
owners (triangular nodes).

d) U-Binder Units: these encode the negative evidence and the uncertainty in
the information about property values of a Type or Token.

e) Concept Units: these represent Types as well as Token nodes.

4.3.1 Enable Units

These units have an extremely simple behavior. They have only one site labelled
query, which receives input from Query units in the routines, and two states: active
and inert. These units are initially in the inert state and on receiving input from a
Query unit switch to the active state. While in this state their potential is 1.0. The
units revert to the inert state once they cease to get input. This behavior is
summarized in Figure 4.4.

4.3.2 Relay Units

Relay units are used to encode structural links. As explained in Section 2.3.1, the
role of structural links is to provide channels along which activation may spread
during the retrieval process. Relay units provide the mechanism for encoding these
channels. Figure 4.5a shows some units interconnected via three kinds of structural
links and Figure 4.5b illustrates the actual encoding using Relay units. In general,
every Concept unit has a number of Relay units associated with it; one for each kind
of structural link relating it to other concept units. In the example shown in Figure
4.5b the units A. C and F own two Relay units each because they have two kinds of
structural links associated with them. On the other hand, even though E has two
outgoing links it owns only one Relay unit because both the links are of the same
kind.

Relay units have three sites: owner, upstream and enable. The input from the
owner concept is incident on the site owner while the inputs from other Relay units
are incident on the site upstream. The activation propagated by the Relay unit is
modulated by an enable input; if this input is off, the propagation is weak while if it
is on, the propagation is strong. Currently, the enable signal has two levels but it is
trivial to extend this to allow a range of modulation.

The details of the computational characteristics of these units are described in
Figure 4.6. The design involves specifying three parameters:

a :the degree of attenuation per structural link and

ah and a, the strength of activation corresponding to the high and low
values of the enable signal.

The choice of parameters depends on the manner in which we want the activation to
spread along structural links. In order to illustrate how the parameters are fixed, we
will describe this process for the is-instantiated-by link. An is-instantiated-by link is
the inverse of an is-an-instance-of link and is an example of a "topdown" link. Such

0f
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links normally have a weak "priming" or "facilitation" effect but p!-: a mdi.
important role in the processing of Class It Queries (cf. Section 3.1).

We begin by fixing the weight of all incoming links to be 1.0. Next we make
three design decisions in order to constrain the choice of parameters:

1) If a concept unit is at a potential of 1.0. then all its neighbor:g concept
units linked via is-insiantiated-by links should reach a potentiai of around
0.15, provided these links are enabled.

2) The effect should gradually decline as we move along successive links and
after five levels should be around 0.05.

3) If the structural links are disabled, the potential of the immediate neighbor
should remain in the vicinity of 0.05.

The value 0.15 in the first constraint is a measure of the evidence provided b% a
Type to each of its instances during the processing of a quer'. that specifies z T.pe
and seeks an instance of that Type (Class I Quur ). The lo value of 0.05 in thc
third constraint is in keeping with the view that it is intended to model "priming"
effects which are typically very weak. The exact %alues are not very crucial and an
alternate set of comparable numbers could have been chosen.

These constraints may be expressed using the follov.ing equation:

I =aXa n  eq-lll

where I is the input available n levels away from a "source" (Concept unit) at
potential 1.0. Using eq-l %e find that the inputs required by a Concept unit to reach
potentials of 0.05 and 0.15 are 0.02 and 0.07 respectli%%. Substituting these values
in eq-Ill the constraints may be expressed as

* x a = 0.07,

h X a5 - 0.02 and
ai x a < 0.02

There are many solutions satisfying the three constraints and the set of values
chosen is: a, = 0.03, Oh = 0.08 and a = 0.80.

With this choice of values the resulting sequence of potentials at successive levels
starting from a unit with potential 1.0 is:

1.0 0.15 0.12 0.09 0.07 0.06 -- with is-instantiated-by links enabled, and

1.0 0.05 0.04 0.03 0.02 0.02 -- with the links disabled.

This example suggests that the space of design parameters is underconstrained
and to a great extent the choice of parameter values depends on the designers
judgement. However, it should also be obvious that there are precise rules
constraining the set of possible choices. The approach has been to make a k-%
arbitrary choices and then utilize these as constraints to obtain the remaining %alues.

I.- ' . - .. . .. ?.-7 - .-. "3 . -3 -' .--- .- .~ i ? . i- -i i - . . .i
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Just as is-instantiated-by links may be characterized as "topdown" links, some
other kinds of structural links may be classified as "bottomup". These links differ
from "topdown" links in that when enabled they transmit much stronger levels of
activation. A good example of a "bottomup" link is the is-an-instance-of link. The
values of a, for "bottomup" links is the same as that for "topdown" links but the
value of ah is significantly higher (0.71). Consequently, the resulting sequence of
potentials at successive levels starting from a unit with potential 1.0 and with the is-
an-instance-of links enabled is: 1.0 0.77 0.68 0.59 0.52

4.3.3 Binder Units

A Binder unit has three input sites labeled p, o and v (for property, owner and
value respectively). Each site has two links incident on it. One link is an enable
signal from the appropriate enable unit and the other is the input from a Concept
unit. For instance, the site p receives a link from P-ENABLE and another from the
Concept unit representing the property associated with the Binder. The enable
signals are either ON or OFF and for a site to be active the associated signal should
be ON. The computational characteristics of Binder units are described in details in
Figure 4.7.

All the sites have the same site function. This function has the effect of raising
the weights of the inputs when two or more sites are active. The potential function is
as described in Section 4.1 with the input (i(t)) being the sum of the values returned
by the three sites. Binder units have three states: latent, hyper and refractory. The
unit enters the hyper state if two or more sites are active. In this state its potential
grows at a high rate. The unit remains in the hyper state for 25 time steps after
which it switches to the refractory state. In this state it ignores its inputs and its
potential gradually decays. The unit switches back to the latent state once the
potential falls below 0.05. The choice of 25 steps is based on the time it takes for a
typical query to be processed from start to finish. The use of the refractory state is to
bring back the system to a quiescent state. The unit transmits activation in all except
the latent state and the value transmitted equals the unit's potential.

We outline the procedure for arriving at the weights and the input scaling
parameter used in the hyper state.

A Binder unit serves two purposes. Its primary function is to detect simultaneous
activation of two of its three neighbors and to activate the third when this happens.
The secondary purpose of these units is to participate in "facilitation" effects b.
accumulating potential even in the absence of enable signals. The states hyper and
latent characterize the two functions.

The weights of 0.05 and a scale factor of 6.0 are arrived at by considering the
following constraints:

a) Even if all three units connected to the Binder unit are at a potential of 1.0

the potential of a Binder unit should remain well below 0.5 as long as the
enable signals are off. (0.5 being the lower end of the range of potential at
which a unit is considered to be "active" i.e. in a high state of activation).

*f , .. ...
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b) If any two sites are active (enabled and getting more than half the
maximum input), the potential of the Binder uni" should reach at least 0.5 (a
unit may be considered to be active above nis value).

We fix the uppermost value of potential in the first constraint at 0.30. By using
eq-I with Pss set to 0.30, we find that the total input to the unit should be
approximately 0.15. As there are three sites, this gives a weight of 0.05 per site.
Notice that the choice of 0.30 for the maximum value of potential was arbitrary, one
could as well have chosen 0.40 or 0.25 and obtained weights of 0.07 or 0.04 instead.
As we said above the design is underconstrained and different sets of consistent
weights may be chosen.

The scaling factor is calculated by considering the second constraint i.e the unit
should reach a value of at least 0.50 when two of its sites are acti o:. Given that a site
may be active even if the input is half its maximum value. we hie the follow'ing
condition:

If Mavail is the minimum value of input for which we %ant ,he L.rn.t to reach a
potential of 0.5, then Mavail is given by: 2 x 0.5 x 0.05 = 0.05

(two sites active each getting half of maximum input with weights of 0.05)

Using eq-ll or Figure 4.1. it ma. be calculated that Mreq- the total input needed
for the unit to reach 0.5 is 0.30. This gi\c, us a ic-Aer limit on the scaling factr of
Mreq / MavaiI which is 0.30/0.05 6.0.

4.3.4 U-Binder units

In Section 2.4.1 we describted how negative evidence is encoded using special
Binder nodes. These Binder nodes were activated only if an inapplicable propet:?
'value was specified and on being acti'ated they sent an inhibitory, response to their
owner (a Concept unit). The U-Binder units encode these special Binder nodes. The
detailed description appears in Figure 4.8 and we will onl. describe the differences
between the Binder and the U-Binder units.

Besides the three sites - p, v and o, U-Binder units have an additional site labeled
b. This site receives inputs from Binder units related to the rele\ant propertu and
owned by the same Concept unit that owns the U-Binder urit. The site b becomes
active if the input indicates that a Binder is in the h~pcr state. Unlike the
corresponding sites on Binder units, the sites % and o of U-+.,-der units recei'e
inputs only from the appropriate F.NEABIE units and are considered actie if the
enable signals are ON.

A U-Binder unit enters the hyper state if b is not active but both p and s are
active ( b is an inhibitory site). In this state the unit sends output after a delay of one
time step.

.- ... S.. :.
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4.3.5 Concept units

These units represent Types as well as Tokens in the Memory Network and their
basic function is to integrate the incoming activation. The computational features of
the Concept units are described in Figure 4.9. These units have a site for structural
links (relay), three sites for receiving inputs from Binders (by bp and bo) and a site
(query) for receiving inputs from Query units in the routines.

The links incident on the site relay have a weight of 1.0 while the weights on
links at the site bp are 0.80. The links incident on sites bo and by are evidential links.
The weight associated with a positive evidential link of strength e is such that it will
drive the potential of the target unit to e in the absence of other inputs. The values
of positive evidential weights are obtained using eq-I and they may range from 0.0
to 1.0. The weights on links from U-Binder units are negative and their value is
equal to the strength of negative evidence.

While the positive inputs are simply added, the negative inputs from U-Binders
are treated differently by Concepts and their contribution is given by:

log( abs(input)), bounded between -2.0 and 0.0

The rationale for using the logarithmic function is as follows: for a given
property, if there is very little uncertainty that the values specified by the Binders
are the only possible values and a wrong value is specified, then the negative
evidence for the Concept should be high. However, if the uncertainty is high then
the negative evidence should be low. In the limiting cases the negati'e e~idence
should be 0 (total uncertainty) or -oo (no uncertainty). A negative evidence of -O is
an idealization and we use a bounded but high negatise value.

Unlike the Binder unit, the sites on the Concept units hase multiple inputs
incident on them. Different sites have different site functions and information about
potential function, state function and the output function is described in Figure 4.9.

4.4 Characteristics of the units in the Answ'er Network

Having specified the connectivity and also the computational characteristics of
units in the Memory Network, we next examine the units in the Answer Network.

There are five kinds of units in this network. These are the Response units, the
Max-calculator units, the Conflict-detector units, the ?-conflict units and the ?-no-
info units.

4.4.1 Max-calculator units

A Max-calculator unit has one site namely, max. All inputs from Response units
are incident on this site. The site-function returns the maximum of these inputs and
the unit's potential takes on the value returned by the site-function. The output of
the unit is equal to the value of its potential. Refer to Figure 4.10 for details.

4.4.2 Conflict-detector units
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A Conflict-detLt:tor unit has two sites: sum and enable. The site enable receives
input from the Query unit that initiates the query and it simplN returnS the input
value while the site sum receives inputs from all the Response units and .urns the
sum of these values. Initially, a Conflict-detector unit starts out in the inc,- state and
ignores all inputs at the site sum. On receiving a positive input at enable it switch to
the initial state. In this state the site sum processes its inputs but the unit maintains a
potential of 1.0. If the value returned by sum r-xceed '0 the unit switches to the
interim state and its potntial equals the inver-,e of the value retu'ned by sum
(subject to a maximum o 1.1 and minimum of 0.1). The unit swit..hes to the inert
state whenever the input at enable falls to 0.0. The output of this unit is equal to its
potential. Figure 4.11 specifies this information in detail.

4.4.3 Response units

The Response units have Yur sites. One for inputs from the Memor% \erork
(m-net), one for input f: i tne Conflict-detector unit (sum), one for input from the
Max-calcUlator unit (ma\) and the last one (enable) for inputs from Quer units. Al
the sites except enable simp return the value received by them. The sit, enabki
returns the maximum value received by it. The unit starts out in the inert state. In
this state it ignores all inputs at sites m-net, max and sum. The unit s itches to the
active state if the site enable returns a positi%.- value. In this state the unit maintir*,
a potential but the grovth of potential is governed by the values returned b. the
different sites as described below:

1. The Input is defined as the current potential minus the input from thI
Max-calculator unit plus the input from the unit in the Memor Network.

2. The value of V is set to the input received from the Conflict-detector unit.

Once the potential exceeds a preset value (currently 0.80), the unit switches to the
winner state. If the input at enable falls to 0.0 the unit reverts to the inert state and
its potential graduallh decays to 0.0. The output of these units equals its pokential.
Figure 4.12 summarizes this information.

The network composed of Response units, the Conflict-detector unit and the
Max-finder unit is an efficient implementation of a winner-take-all network (WIA
where the competition is set up between the Response units. This design of a WI A
has many advantages over earlier ones. First, it uses only 0(n) links as against O(n 2 )
for a W[A of size n. Second. it has a built in preference for finding a single vinner.
If more than one Response unit is getting strong evidence, the w. 'ab,- parameter V
has a dampening effect on the growth of the potential of the i ::ponse units and
none of the units reaches a ver% high value of potential. Thus, if for some reason aclear winner is not immediately available the competition is automatically extended.

This permits evidence to accumulate over varying periods of time. This feature is
very important if evidence from multiple levels in the Memory Network is to be
integrated. The computations in the Memory Network may noA perform a
hierarchical decision making process (but parallel within a level in the hierarch)).

However, there are cases in which there is simply no clear winner and none of

the Response units ought to dominate. Two such cases identified in Section 3.1
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were: a) none of the Response units get evidence or b) more than one Response
units get nearly equal evidence. The following unit types handle these two cases.

4.4.4 ?-Conflict Units

?-Conflict units are designed to win if more than one Response unit is receiving
evidence from the Memory Network and yet no single Response unit is able to
dominate the competition. These units have two sites sum and enable. The former
receives input from the Conflict-detector unit and returns the inverse of the value
and the latter returns the maximum value of its inputs. The potential of these units
grows if the value returned by sum exceeds 1.0 and the site enable is receiving
positive input. Otherwise the potential gradually decays to 0.0. The detailed
description is given in Figure 4.13.

4.4.5 ?-No-info Units

A ?-no-info unit gains potential if none of the Response units receive an%
evidence from the Memory Network. The unit's behavior is very simple and is
described in Figure 4.14. A positive input at site max indicates that at least one
Response unit has a positive potential. In this case, the unit's potential decays from
its current value. If the input at site max is 0.0 then the unit gains potential. The
only significant point is that there are two rates at which a ?-no-info unit may
accumulate potential. If only local evidence in the Memory Network is to be used
during the query, the rate of accumulation may be increased by activating the site
accum-rate.

4.5 Conclusion

The implementation described herein is evolving over time. However, the main
features have been stable for near. a year. Work is in progress to formally
characterize the computations performed by the units in the Memory and Answer
Networks and to relate the dynamics of these networks to a formal theory of
evidence. A discussion of these issues appears in Section 5.

I
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to MEMORY NETWORK

FROM OTHER UNITS
NABLE > ANSWER NETWC::K

IN THE ROUTINE

from ANSWER NETWORK

WEIGHTS

All incoming links have a weight of 1.0

SITE FL NCTIONS

ENABLE: Returns the value of the highest input
DON-.: Same as above

POTENTIAL F'NCl ION

p(t + 1) 1.0 if q(t) = acti~e p(t± +1 is -the potential at time t -t- I
~0.0 otherwise qw is the state at timt

STATE FUNC- ION

START II rATV

STATE

DONE 0 ,8* DESIGN~ PARAMETER

OUTPUT FUNCTION

* o(t) -p(t)

FIGURE 4.3: Query Unit
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from QUERY UNITS QEYto BINDER UNITS

WEIGHTS

All incoming links have a weight of 1.0

SITE FUNCTIONS

QUERY: Returns the value of the highest input

POTENTIAL FUNCTION

p(t±+ 1) -1.0 if q(t) = active

<0.0 othem ise

STATE FUNCTION

* START

STATE

QUERY=0

OUTPUT FLNCTION

0(t) p(t)

FIGURE4.4: Enable Units
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F-ROM QUERY UNITS

ENABLETO OWNER AND
FROM RELAY UNITS OTHER RELAY UNITS

UPSTREAM DOWNSTREAM

FROM OWNER

K (CONCEPT UNIT)

WEIGHTS

All incoming links have a weight of 1.0

SITE FUNCTHINS

ENABLE: Returns the value of the highest input
UPSTREAM: Returns the sum of all inputs
OWNER: Returns input x ah if state = enabled

else returns input X a

POTENTIAL FL'NCTION

p(t) -max ( UPSTREAM4, OWNER)

SIl ATE FUNCTION

If ENABLE > 0.0 then q(t) =enabled

else if potential > 0.0 then q(t) =active

else q(t) =latent

OLUTPU1 FUNCTION

o(t) p(t) xa CurrenthN a =0.80 and al 0.03
"topdown- links ha'e =h 0.08 while

"bottomnup" links have Oh 0.71

FIGURE 4.6: Relay Units
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P-ENABLE SIGNAL

FROM PROPERTY

0-ENABLE SIGNAL - TO PROPERTY, OWNE ,

FROM WNERVALUE AND U-BINDER

UN ITS
V-ENABLE SIGNAL--,

FROM VALU~~

WFIGH! S

Enable signals are either ON or OH-. other links have a %eight of 0.05

SITE FL NC-1 IONS

All sites have the same site function:
If state = hiper return Input x 6.0
if state = refractoro return 0.0
if state = latent return input

A site is actixe if the enable signal is on and the input is at least half its maximun %aluc.

POTFNT IA I FLAC IO0

pO±I+1)h- X P(t) + i(t) X(LO- V Xp(t))

V=0.6, I(t) =sum of values returned b all the sites.

SI ATEF FL. NCTION0

2 OR MORE SITES ACTIVE

STT

OUTPLUT FUNCTION

If q(t) =latent then o(t) 0. 0 4 ESNPAMTR
else 0(t) NO DEIG ARMEE

FIGURE 4.7: Binder Unit



P-ENABLE SIGNAL

FROM PROPERTY

O-ENABLE SIGNAL-V 0 TO OWNER AND

VALUE UNITS

FROM
V-ENABLE SIGNAL---v BINDER UNITS

WEIGHTS

Enable signals are either ON or OFF, link from Property have a weight of 0.05

while links from Binders have a weight of-1.0

SITE FUNCTIONS

All sites ignore all inputs in refractory state.
B: If any input less than half the minimum value then site is

active. Returns the minimum input value.
P: If P-Enable ON and input greater than half the maximum

then site actixe. Returns the input value if state = latent
but returns 6 x input if state = hyper.

O.%: Site active if Enable signal is ON.

POTEN1II%. FLNCI ION

p(t+ 1) 4- 7'xp(t) + i(t) X(I.0- 'Xp(t))

= 0.6, i(t) = sum of" alues returned by all the sites.

STATE FLNCTION B NOT ACTIVE BUT

START
STATE

IF POTENTIAL AFTER 25 TIME STEPS
FALLS BELOW 0.05

OUTPUT FLNCTION

If q(t) = latent then o(t) ,- 0.0
else* o(t) ,- p(t)

"No output in the time step immediately follo% ing the entry into the hyper state.

FIGURE 4.8: U-Binder Unit
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FROM QUERY UNITS

QUERY
BP

FROM BINDER UNITS BV TO RELAY AND

BO BINDER UNITS

RELAY

FROM RELAY UNITS

WEIGHTS

Links incident at site QUERY and RELAY have a weight Of 1.0,
Links incident at site BP have a weight Of 0.80.
Links at site BV and BO are evidential links and their weights vary from 0.0 to 1.0.
(See section 4.3.5 for an explanation).

SITE FUNCTIONS

QUERY: Returns input value
RELAY. BV: Returns sum of input values
BP: Returns the value of the highest input
BO: Add each positive value and add log(mod(input value)) for negati~e

value *

"The contribution of each negative value is bounded by -2.0.

POTENTIAL FUNCTION

V(t+ 1) - Vxp(t) -t i(t) x(1.0- Vxp(t))

V = 0.6, i(t) = sum of values returned by all the sites.

STATE FUNCTION

q(t) = broadcast if p(t) > 0.0
else state = latent

OUTPUT FUNCTION
S

If q(t) = latent then o(t) - 0.0
If q(t) = broadcast then o(t) .- p(t)

FIGURE 4.9: Concept Unit
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TO RESPONSE, ?-NO-INFO

AND QUERY UNITS

FROM RESPONSE UNITS

WEIGH1S

All incoming links have a w'eight of 1.0

SITE FLNCI IONS

1MAX: Returns the value of the highest input

PO IFNIIAI. FL*NCTION

p(t) - MAX

S I.IF FLNCTION

Single State

OUTPUT FUNCTION

o(t) 4- p(t)

FIGURE 4.10: Max-calculator Unit
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FROM QUERY UNITS ENBETO RESPONSE AND

?.-coNFLICT UNITS

FROM CONFLICT-DETECTOR
UNIT

WEIGHTS

All incoming links have a %eight of 1.0

SITE FLNCTIO.S

ENABIlE: Returns the value of the highest input
SLM. Returns the sum of all the input values

POlENTIAI. FL NCI ION

p(t+1) ,- Txp(t) ifq(t) = inert
* 1.0 if if q(t) = initial
,- max (0.1, (min 1.1. 1/sum)) ifq(t) interim

S1 A IF VLAC I ION

ENABLE> 0 SUM >1.0

STA R TI N RI N T AI N E MSTATE

r

ENABLE = '

OUTPUr FL NCTION

o(t) -p(t)

FIGURE 4.11: Conflict-detector Unit
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TO MAX-CALCULATOR, CONFLIC
DETECTOR AND SUBSEQUENT
ROUTINE UNITS

FROM MAX-CALCULATOR

UNIT A

M-NET FROM MEMORY NETWOR .

FROM CONFLICT-DETECTOR
UNIT

FROM QUERY UNIT

WEIGHTS

All incoming links have a weight of 1.0

SITE FUNCTIONS

ENABLE: Returns the value of the highest input

SLM. MAX and M-NH: Return the input values

POlFNttA1 F ,',CTION 17

p(t+ 1) - xp(t) ifq(t) = inert

'(t)xp(t) + a x (M-NF:+ p(t) - MAX) X (1.0- 7(t)Xp(t))

other% ise.

v(t) = SUM, a = 0.35 and S = 0.6

S1 ATE FUNCTION

If ENABI.E > 0.0 then if p(t) > 0.80 then q(t) = %inner

else q(t) = actiie

else q(t) = inert

OUTPU'T FLNCrION

o(t) .- p(t)

FIGURE 4.12: Response Unit
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FROM CONFLICT-DETECTORsu
UNIT TO PRECEDINE QUERY

UN IT AND AN"P;
SUBSEQUENT ROUTINE
UNITSP...L

FROM QUERY UNITS SMNB

WEIGHTS

All incoming links have a weight of 1.0

SIT LNC'I 10N S

* EN ifF:Returns the highest input value
SLAM: Returns (1.0/input %.alue)

POTENTIAL FUNCTION

if q(t) = inert then
p(t +l) 4- vx P(t)

* lf q(t) * inert then
p(t + 1) '-P(t) + (SLM% - 1.0) if SUMI> 1.0

4- xp(t) if SUMI < 1.0 =0.6

STATE FUNCTION

If ENABLE >0.0 then if P(t) > 0.80 then q(t) % inner
else q(t) =latent

r-. else q(t) = inert

OLIPPr FUNCTION

FIGURE 4.13: ?-Conflict Units



FROM MAX-CALCULATOR UNITA

TO PRECEDING QUERY
UNIT AND ANY SUBSEQUEN
ROUTINE UNITS

FROM QUERY UNITS CCUM-RATE

FROM QUERY UNITS

WEIGHTS

All incoming links have a weight of 1.0

SITE FUNCTIONS

ENABLE. M4AX. and ACCUM-RAWIF: All return the highest input value

POTENTIAL. FU;NCTION

if q(t) = inert then
p(t +1) +- vx p(t)

If q(t) * inert then
p(t +1) -p(t)±/+ if MAX 0.0

4- ~xp(t) if MAX > 0.0

17, 0.6: if ACCU'M-RATE F> 0.0 then p0.08 otherm ise pi equals 0.03

STATE FUNCTION

If FNABI.F>0.0 then if p(t) > 0.80 then q(t) w inner
else q(t) =latent

else q(t) =inert

OUTPUT FUNCTION

0(t) 4-p(t)

FIGURE 4.14: ?-N,,o-info Units
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5. Open questions and future directions I
This section briefly discusses several issues that have not been dealt with in the

current paper. These include technical questions on evidence theory, convergence
and learning. Furthermore, we propose to extend the current work in several
directions and some of the possibilities are outlined below.

5.1 Evidence, Energy and Convergence

Throughout the earlier sections of the paper we have referred informally to our
treatment of representation and inference as "evidential." The determining
characteristics of an evidential treatment are quantitative inferences and the ability to
deal effectively with incomplete information. In this section, we discuss some basic
issues of evidential reasoning and how they articulate with our current
implementation. Evidence theory is a subject of increasing importance in artificial
intelligence and has man) unresolved issues. From a certain point of view, a large
part of Al and related fields depend crucially on a coherent method of combining
evidence. This is particularly clear in Expert Systems efforts where combining beliefs
is often the basic operation. But we can also view all perception problems as
involving combinations of evidence for the presence of an edge, a word sense, an
object, and so forth. Since there is no generally acceptable theory of evidential
reasoning, the first question must concern how existing systems function at all.

Over-simplifying, one can say that existing evidential systems are either very
small or do not rely heavily on their rules of combination. One can, in principle,
eliminate general evidential reasoning by having a separate rule for each
combination. Many expert systems are constructed along these lines and there are
some attempts [Doyle 83] to establish that it should be done this way. The difficulties
are the combinatorial explosion in the number of combination rules and the fact that
adding a new statement involves deciding its interactions with all the existing ones.
And no one has suggested using such an approach to low level perceptual tasks.
Another reason why programs can work in the absence of a coherent evidence theorx
is that many decisions are sufficiently clear-cut to be insensitive to the detailed rules
of combination. One can build vision systems that decide the presence of objects
from evidence for features with almost any monotonic rule of combination. The
other aspects of perception problems have been so difficult as to suppress the issue
of evidential inference. But the issue is always there, and becomes especially
important in connectionist treatments like the current paper. One can usually view
each unit in a connectionist network as combining evidence (its input and state) and
producing an output which can be treated as the unit's confidence in the validitq of
some proposition. A principled theory of unit behavior from an evidential reasoning
standpoint appears to be necessary for the success of connectionist modelling.

To elucidate the notion of a formal evidence theory, we will focus on a particular
rule called Dempster's Rule as expounded by G. Shafer in his book, Theory of
Evidence [Shafer 76] and discussed in [Lowrance 82]. We will illustrate the rule with
the Quaker-Republican example used earlier. We assume that believing someone is a
Quaker provides subjective evidence that he is a pacifist and similarly for
Republicanism. As mentioned above, the theory explicitly provides a way of
expressing ignorance. Suppose we believe that 70-80% of Quakers are pacifists and
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20-30% of them are not. The Dempster formulation would have us set the evidence
weight for pacifist given Quaker, Bel (PIQ) to be .7, Bel (-IPIQ) = .2 and to assign
the uncertainty formally to 0, the set of all possibilities under consideration. The
formal variable 0 corresponds to the residual uncertainty explicitly represented in
e.g. the color of apples in Figure 3.12. Suppose our belief about the effect of
Republicanism were Bel (PIR) = .2, Bel (-'PIR) = .6, Bel (eIR) = .2. The
Dempster-Shafer theory suggests a rule for combining these tmo bets of beliefs, given
that they can be treated as independent evidence. [Shafer 76] presented the formal
basis for the rule and discussed manN of its properties, we will not attempt to
summarize that book here. The intuitive content of the rule is best discussed in
connection with Figure 5.1.

The outer parts of the table in Figure 5.1a simply encode the belief information
given in the previous paragraph. Each box in the table is assigned a number that
corres- ,nds to the joint weight of its row and column and is something like a joint
probablity of two independent events. The crossed-out boxes capture the fact that a
person is either a pacifist or not and so P and -P can't co-occur. The way to view the
entries under e is that ignorance is compatible with any event. Raw beliefs aie
formed by adding all the table entries for each event of interest. Since some joint
events are logically precluded, the final belief structure is computed by normalizing
with (dividing b.) the sum of raw beliefs. The resulting answers are plausible. but do
not make a compelling case for this particalar rule of combination.

in fact. there are some unresolved issues vith Dempster's rule (particularl% on
exactl when it applies), but it has a number of advantages for our purposes. An
obvious advantage is that the set of beliefs for an% question always adds to one, so
that more evidence can be added in a uniform wau. Suppose that we no, learn that
Dick is a member of the Marine reserves and beheve that this suggests non-pacifism
(.8) with 0 = .1. Then the results of our pre%ious calculation can be combined %kith
this new evidence, incrementally (Figure 5.1b). The result would he a belief in Dick's
non-pacifism of .77. of his pacifism equal .22. and uncertaint-% of .01. Similar
calculations can be made using the sirength of Dick's Quaker and Republican beliefs
if these are knoakn. This collection of features makes the Dempster-Shafer evidence
theorn a qualitative improvement over previous suggestions in Al for handling
conflicting evidence [Quinlan 831 and suggest that the theory should be considered
seriouslN by expert-system designers.

There are a number of other proposed rules for combining evidence and. in each
case including Dempster's rule, there are clear situations where the rule is counter-
intuitive. In fact, there is a considerable literature [Kyburg 741 on this subject,
primarily by philosophers. Our current belief (sic) is that there are a modest number
of distinct evidential situations for which different rules of combination are
appropriate, but we have no idea whether they can all be treated as variations on a
single principle such as maximum entropy. The point of current interest is that a
formal evidence theory to specify the behavior of connectionist and other evidential
systems is necessary and possible. Many of the detailed design decisions presented in
Sections 3 and 4 are based on evidential considerations but we do not yet have a
formal mapping from our implementation to any theory. One reason is that an\
connectionist implementation must also take into account the dynamics of network
behavior.

.1
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Given that one has a way of specifying what a system should do, there remains
the problem of showing that the goal is achieved. This dynamic correctness question
for massively parallel systems has been receiving considerable attention and
considerable progress is being made. A key insight of Hopfield [Hopfield 821 is that
there is a close analogy between certain physical systems and connectionist networks
whose desired behavior can be characterized by minimizing global energy functions.
In this case, one can choose a unit rule that always reduces the global energy and
thus insure convergence to at least a local minimum (of energy). The idea is easiest to
see in a recognition situation [Geman & Geman 84]. The total energy could be made
up of separate terms, each of which represents the compatibility of some hypothesis
with the features found in the input. Ideally one would have all the relevant terms
represented by separate units and arrange that each unit could compute its next value
(of state or potential) in a way that reduced the total energy of the system. For
example, a "line" unit that had inputs from many compatible "edge" units woulda assume a large (negative) value. Continued operation of the individual units would
drive the system to a low energy state i.e. a solution. Of course, the situation is much
more complicated than this (cf. [Hinton & Sejnowski 83]) and a number of serious
technical problems remain to be solved. But the general idea of local operations that
act to minimize a criterion is a fine way to look at the dynamics of connectionist
networks.

One major difficulty with local relaxation schemes like that described above is
that the system state can drift into a local minimum that is not an adequate solution
to the original problem. The issue of a network converging to an incorrect solution is
central in any formulation -- the energy function provides a convenient metaphor. A
familiar example from perception is an image that is coarsely sampled, seen too close
up. Your visual system detects edges that can't be interpreted. Moving back or
squinting allows the system to reach a better overall solution by making it less
confident of the spurious edges. The problem of false minima is inherent in"'. "connectionist networks because activation must spread through several levels in an

non-trivial computation. There is no way for an irreversible local decision to be
correct in all cases. There are a variety of ways to avoid local minima in recognition
problems. One proposal is to use stochastic methods so that there is a high
probablility of reaching a good solution [Hinton & Sejnowski 831. Another idea is to
design the energy function so that global organization has a large enough role to
preclude stable local minima. Each of these has advantages and disadvantages. A

-third method, used in this paper, is to have the local computations move slowly in
the direction perceived to be correct at each instant. The idea here is that distant
computations have time to make their impact before a local configuration reaches a
stable state. One pitfall in any dynamic system is oscillation and our design also
avoids this problem.

In the current framework the controlled nature of spreading activation in the
Memory Network and the restricted (only local) use of negative activation ensuresthat the nodes in the Memor. Network will reach a stable level of activation. A look
at the three kinds of queries supported by the network and the ensuing activitN in
the Memc,4 , Network should help in making this point. The use of enable signals on

* Binder and Relay nodes prevents spreading of activation that is irrelevant in the
context of the query being processed. For each query, the activation flows along
designated structural links only and converges to a few concept nodes (Values in case
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of Class I queries and Owners in case of Class 11 queries). Each node accumulates the
incident activation and the potential of these nodes increases in time to a steady state
value. The only exception is the case where negative evidence inhibits a owner
during the processing of a Class 11 query. However, even this does not result in an
oscillatory behavior because the negative evidence impinging on a node is from
strictly local nodes (its own Binders) and its contribution takes effect within a
constant number of steps after the owner starts receiving positive activation.

Although there is no oscillatory behavior in the Memor) Network, the problem
of convergence and oscillations must also be considered in the conte,.t of the Answer
Network. The source of oscillations in the Answer Network is conflicting evidence
and incomplete information in the Memory Network. If two or more Response
nodes in the Answer Network receive nearly equal activation from the Memory
Network, there is a possibilit. of both the nodes rising to a high potential. The
design of the Answer Network (as described in Section 4.4.3) is such that when this
occurs, the growth of potential of all Response nodes is slowed down in the hope
that eventually one of the answers will be able to dominate and win. This assumes
that activation spreading along structural links may eventually activate parts of the
Memor) Network that may provide evidence to resolve the conflict. In case this does
not happen within a reasonable interval the [?-conflict] node in thc Answer Network
begins to acquire a high potential and eventually wins. This mimics a time-out
phenomena. A similar strategy is adopted to decide in the favor of [?-no-infoj answer
if none of the possible answers is getting any activation for a sufficiently long time.
The duration of time-out is a design parameter and may be varied to meet specific
design goals.

The current situation is that we are pursuing in parallel theories of evidence and
convergence and the design of semantic neural networks. The current solutions to
evidence and convergence problems hae been robust o'er other changes in the
system. The [?-conflict] node in answer networks deals %ith the d.namics issue of no
clear answer. The [?-no-inft] deals with the evidential issue of inadequate
information. While there is no substitute for principled theories of behabior and
dynamics for connectionist networks, we ha.e been able to make progress in
representation and inference questions within the current semi-formal frameAork.

5.2 Extracting answers from the Memory Network

In Section 3 we restricted the kinds of queries handled by the system to be
multiple choice questions. We will now re-examine some important issues underlying
this restriction.

Queries are posed to the Memory Network (network) by activating certain nodes
and enabling specfic links in the network. Once the state of the network is thus
initialized, the inference process proceeds independently in the network according to
the built-in rules of propagation and evidence accumulation. The ensuing state of the
network (primarily the levels of activation of concept nodes), in a sense, is the resuI
of the inference performed in response to the query. However, the set of active nodes
in the network resulting from a quer. not only includes nodes that correspond to the
answer being sought, but also includes other nodes that take part in the inference
process. For instance, in a query inohing property inheritance many nodes along
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the Type hierarchy may get activated before the node that represents the answer.
With respect to Figure 5.2, a query such as ?v (B PI) (What is the value of the
property PI of B), results in the activation of nodes C and D besides the node V1.
The activation of nodes C and D may be viewed as intermediate steps in the
inference process whereby the initial query ?v (B PI) is succesively mapped into ?v
(C PI) and ?v (D P1).

The presence of other active nodes besides the ones representing the answer
raises the fundamental question of how to extract the final answer from the resulting
state of the network. In the framework described in this paper we have finessed the
problem of answer extraction by employing Answer Networks in routines. Routines
always pose queries with reference to an explicit frame of discernment (the set of
possible answers). The frame of discernment is encoded in the form of an Answer
Network and the final answer is determined by the Answer Network node that
receives the strongest support from the Memory Network.

Assuming the availability of an explicit frame of discernment is consistent with
the notion of routines. Routines represent pre-wired (compiled) networks dedicated
to specific tasks and hence it may be assumed that the possible answers to queries
originating from routines are known in advance and encoded as Answer Networks
within the routines. However, it is easy to visualize situations in which one cannot
assume advance knowledge of the frame of discernment (in the present context - the
existence of a routine with an appropriate Answer Network). A query such as "What
does John like most?" does not have an obvious frame of discernment. The answers
could be as varied as "ice-cream" (a kind of food), "science fiction" (a kind of
literature), "tennis" (a sport) or even something such as "a glorious sunset" or
"freshly fallen snow". The problem is further confounded in situations where the
answer does not correspond to a specific node in the Memor, Network but must be
expressed by interpreting the relations between a number of active nodes. An
example of this could be an answer such as: "the tall man wearing the black tie..."
which would involve man. active nodes: a probable set being nodes that represent

* \MAN. H4S-HIIGH-. TAI I.. liF. H.IS-COlOR. BLACK and IS-WEARI.,G.

In its most general form, the problem of answer extraction is related to and seems
at least as complex as the problem of natural language generation. We feel that the
work of other researchers in this area [McDonald 83: Dell 80; Simmons & Slocum
721 will provide us with %aluble insights. Though at present we have not directed
much effort towards solving this problem, we propose a possible way of dealing with
some restricted cases of answer extraction in the absence of an explicit frame of
discernment.

The kind of queries dealt with in this paper often define an implicit frame of
discernment (fod) that consists of all instances of some Type represented in the
Memory Network. Consider queries whose answer amounts to selecting an instance
of a given Type on the basis of some specified property values. Such queries define
an implicit fod consisting of the instances of the Type. For example, in the query:
"\ame a red tropical fruit", all the instances of the Type FRLUI constitute the fod.
Other queries that specify a Concept (lype or Token) and a property and seek the
%alu of the propertv may also define an implicit fod that consists of the possible
.,flues of the specified property. Often. the set of possible values correspond to a
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single Type in the Memory network. For instance, query such as "What is the color
of an Apple", implicitly defines a fad that consists of all the instances of the Type
COLOR. However, all queries do not define an obvious foad, the query "What does
John like most?" that may be interpreted as Vv (JOHN HAS-LIKING-FOR)), is a caw
in point. The cases in which an existing Type in the Memory Network constitutes a
fod may be handled by requiring the design of the Memory Network to be such that
all instances belonging to a Type be linked together in a WTA fashion. This amounts
to having an Answer Network corresponding to each Type in the Memory Network -
with the instances of the Type constituting the possible "answers". The WrA
associated with the appropriate Type may be selectively enabled by routines during
the processing of appropriate queries.

It is possible to extend the above idea to handle qeries that have a very diffuse
fod if any. This is done by using routines to perform a hierarchically organized
search. If no fod is suggested by a query then the fod associated with the most
general concept in the Memory Network is taken as the initial fod. As the
computation progresses. the fod is refined incrementall.k by moving down the T% pe
hierarchy until an acceptable answer is found. We illustrate this with the help of a
simple example.

Figure 5.3 shows a simple hierarchy of Concepts in some Memor Network.
Nodes enclosed in dotted lines form WLA networks. The wA networks twl,\ for
short), are named after the immediate Type ,khose instances make up the nodes r
the WTA. Thus. the WTA consisting ofI-N\IS and B*kSEB\I I is referred to as [SPORTI
WTA]. Now imagine that the quer. "What does John like most?" is posed to the
Memory Network. This will be done b activating J01iN and H4S-I II(,- FOR. As no
fod is suggested by the query the wI.\ corresponding to E\FRNTHING will be
selected as the initial fod Hence. the routine will enable [F.A-R'VIHING WI.-J
consisting of the choices PHYSIC\I-IHING and \ON-PHN SICAI.-THING.

As a result of the routines activating JOH\ and HAS-LIKING-FOR, the nodes ICE-
CREAM. GLORIOUS-SLNSFT. SCIENCE--ICiIO\ and TENNIS will receive varying
degrees of acti- tion in proportion to the strengths of John's likings for each of them.
These nodes % iii transmit activation up the Type hierarchy and e,,entually the nodes
PHYSICAL-THING and NON-PHYSICAL-THING will also be activated. Without loss of
generality, let us assume that NON-PHYSICAL-THING receives greater activation and
wins the competition. Consequently, the fod now becomes [NON-PH'NSICAL-THING
WTAI with the choices being VISUAL-EXPERIENCE. LITERARY-KIND and SPORT.
Continuing in this manner it is easy to see how in subsequent steps the fod may
converge to [LITERARY-KIND 'AI with the choices being SCIENCE-FICTION and
SHAKESPEAREAN-TRAGEDIES. If John likes SCIENCE-FICTION more than
SHAKESPEAREAN-TRAGEDIES then it is easy to see how SCIENCE-FICTION will be
chosen as the answer. Although we have not specified ,, termination criteria, one may
imagine rules that terminate the process when the fod consists of nodes at the
subordinate level [Rosch 751, or when one of the choices is abo%e some absolute
threshold.

Under the above proposal the routines essentially perform a breadth first search
in parallel and the number of steps taken b, e~en the most general quer are
proportional to the depth of the conceptual hierarchy. Admittedly the proposal needs
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to be refined and we hope to do this in the near future.

5.3 Extending the representational framework

Our approach to the problem of semantic information requires us to treat the
traditionally distinct issues of knowledge representation, inference and computational
framework simultaneouly. In order to keep the over all complexity within
manageable bounds while being honest to the approach, our strategy has been to
consider only a restricted class of representational issues. This has allowed us to
devote requisite attention to issues related to inference and the development of a
connectionist system that embodies our solutions. In terms of purely representational
issues we have thus far focused primarilv on developing a framework that is best
suited for representing simple concepts and natural kind terms. There are several
important issues that we have not addressed as yet. These include representation of
complex information such as description of actions, events, complex shapes,
definition of composite relations, finer structure of properties and constraints
between property values (structural descriptions [Brachman 791). An open question is
the division of knowledge between the Memory Network and the routines.
Eventually, some of the information referred to above may be represented in the
form of routines rather than in the Memory Network. Needless to say, many
problems remain to be solved, but on the basis of our experience so far we are
hopeful that it will be possible to extend the framework to solve most of the open
questions. In this section we present a few assorted examples to indicate the kinds of
issues being pursued.

Figure 5.4 shows the representation of the predicate LOVES. In the context of
predicates it is easy to see the similarity in the notion of properties as used in our
formulation and case roles that denote relations between predicates and noun phrases
[Bruce 75: Fillmore 68]. The simplified representation in Figure 5.4 suggests that a
PREDICATE has two case roles namely, HAS-AGENT and HAS-PATIf.T. For the more
specific predicate .OVES these cases roles get mapped into H..iS-I_0VE-.4uk NT and
HAS-LOVE-PATIENT which in turn are filled by JOHN MAR) in the representation of
"John loves Mary".

In the example discussed above we used specific nodes such as H4S-LOIE-AGE,T
and HAS-LOVE-PATIENT as well as more general nodes such as HAS-AGENT and HAS-
PATIENT. This corresponds to the use of exploded cases, a notion that has been found
to be extremely useful in work on connectionist modeling of natural language
processing [Cottrell & Small 831. In Section 2 we over-simplified and used values
such as red and green for the colors of apples and pears. However, we expect to
represent these values by concepts that are much more fine grained. In developing
representations it is important to bear in mind 'at the normal usage of language
often belies the complexity of the information being communicated. In some cases
detailed information may not be articulated as it is not relevant to the situation.
However, oftentimes, a speaker does not make certain distinctions because he relies
upon the hearer to make these by using his world knowledge. For instance, while
refering to the color of an apple and that of a brick as "red" one seldom means that
they are the one and the same color. One assumes that the hearer is aware of the
difference between the two colors and hence will be able to interpret the two usages
of "red" appropriately. In view of the above we intend to use color values such as
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APPLE-RE). ROSE-RED and BRICK-RED. It is important to make these distinctions in
a knowledge representation scheme in spite of the surface uniformity of language.Traditional knowledge representation systems do not have to represent these

distinctions explicitly as they can shift this burden to the interpreter; the interpreter
may be programmed to treat differently the value "red" when it is associated with
distinct objects. The absence of an interpreter in our formulation, however. makes it
necessary to explicitly represent concepts at a finer grain. We envisage the
relationship between concepts such as APPLE-RED and RED to be the same as that
between RED and COLOR. The properties associated with color - HUE, BRIGHT.\XESS
and SATURATION - may be used to make classifications like RED and GREEN and
also to make finer distinctions like BRICK-RED and APPLE-RED.

The role of exploded concepts acquires added importance in the representation of
semantic information about events and actions. Finer case roles like HAS-LOVE-
AGENT, HAS-BUY-AGENT and H.4S-PROPEL-.4GE.\ T are needed to represent detailed
information about and differences in predicates such as LOVE. BLY and PROPEL.
Furthermore, distinct case roles make it possibie to represent possible constraints on
values of case roles. The hierarchical organization -,f concepts of varying granularitN
gives the ablity to perform general inferences abkiu: COLOR and HAS-AGENT as weil
as specific inferences about APPI.E-REI) and H.4.S-IOVE-AGENT.

We also wish to pursue the representation of other ontological categories such as
events, sets and situations. Different ontoloical categories have different sorts of
attributes associated with them. For example. the representation of events could be
based on properties such as TLI:IF. -O( '(-URR F.\ CL' LOCATION-OF-OCCURRE.LvC'
CAUSE-OF-O(CURRL \CE and DES-CRIP-IO.\-OI.-OC(CURRENCE. In modelling actions
and events we hope to take advantage of the %ork by other researchers in AI and
linguistics [Jackendoff 83: Bruce 75: Schank 73]. Figure 5.5 shows a simple example
encoding the event described by "Jim made John hit Tom yesterda) ". As before. the
figure is meant to conxey a general idea of how, we intend to approach these
problems.

Sets and situations may be also be represented in a manner similar to that of
other concepts. By sets we mean a finite and unordered collection of entities where
the members of the set are explicitly enumerated. This corresponds to a nai e notion
of sets and is not equivalent to that of formal set theor.. Like all other conceptual

-0 entities. sets aie also represented as collections of <attribute, value> pairs. This
collection includes a pair for each member of the set where the property in the pair
is HAS-.IEAIBFR and the value is one of the member concepts of the set. The
collection of <attribute. value> pairs defining a set may also include structural links
such as is-a-subset-of and is-a-superset-of Inferences on sets will be controlled by
specific routines that will compute set-membership, union and intersection.

A situation is a special kind of set consisting of entities, a set of relations on these
entities and an associated location and time. Examples of situations are: "Harvard
Square on a Friday night" or "an auction at Sotheby's". [Feldman 82b] describes
how knowledge encoded as situations may be used during visual recognition.
Situations may be represented in our formulation by extending the properties
associated with sets to include the attributes H.4S-LOCATION, and H.4S-TI.%EF-OF-
OCCL'RRENCE, and restricting the members of the set to be relations and entities
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ocurring in these relations. The interactions between routines and situations remains

to be worked out.

5.4 Learning

One standard criticism of connectionist models is that there is no plausible
mechanism for the acquisition of knowledge. Although the problem of learning has
not been solved for systems with a central interpreter and data structures, but there is
clearly enough mechanism in this formulation to support learning. For connectionist
modelers the problem is made more difficult by the biological constraint that new
connections cannot be nearly rapid or extensive enough to account for everyday
learning. The only mechanism available appears to be the change in the effectiveness
(weight) of existing connections (synapses). Fortunately, there does seem to be
adequate biological support for learning through weight change and there is a
considerable literature on the mathematics of various possible alteration schemes. But
all of this is focused on problems that are structurally much simpler than our
routines and memory networks. The key technical issue is how a connectionist
network could have a pre-existing structure rich enough to allow for learning the
representations described in earlier sections of this report. Although we are far from
solving this problem, we have a general idea of how learning may occur in the
Memory Network. The learning of routines has not %et received serious attention.

The proposed mechanism for learning in the Memory Network is based on the
notions of recruitment and chunking [Feldman 82a: Wickelgren 791 and we will
discuss these in brief before outlining a plausible mechanism of concept formation.
Broadly speaking, the idea of chunking may be described as follows: At a given time.
the network consists of two classes of nodes:

1. Committed Nodes. These are nodes that have acquired a distinct "meaning"
in the network. By this we mean that given any committed node, one can
clearly identifN sets of other committed nodes, whose activation will result in
the former becoming activated. Committed nodes are connected to other
committed nodes by "strong" links, and to a host of other free nodes, (see
below), via "weak" links.

2. Free Nodes. These are nodes that have a multiplicity of weak links to other
nodes, both free and committed. These form a kind of "primordial network"
of uncommitted nodes within which the network of committed nodes is
embedded.

Chunking involves strengthening the links between a cluster of committed nodes
and a free node. Thereafter, the free node becomes committed and functions as the

4 chunking node for the cluster i.e.. the activation of nodes in the cluster results in the i
activation of the chunking node and conversely, the activation of the chunking node
activates all the nodes in the cluster. The process by which a free node is transformed
to a committed node is c".I"ed recruitment. The mechanics of recruitment in
connectionist networks is descr,.. in detail in [Feldman 82a]. The basic insight in
the solution to the problem of learning through weight change is that certain classes
of random connection graphs ha~e a '.er. high probability of containing the sub-
network needed for learning a new concept.

•.1
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The notion of chunking in its generic form only suggests a mechanism whereby
nodes can be associated and is not sufficient for explaining how structured
relationships arise. In the proposed solution we wish to exploit the non-trivial
structure resulting from assuming that knowledge is organized in terms of properties
and values thereof. We postulate that learning takes place within a network that is
already organized to reflect this structure. For instance, in the context of vision, we
specifically assume that concepts that correspond to primitive properties like color,
shape, texture and motion are already present in the Memory Network of an agent
together with concepts that represent some basic values of these properties. Simple
forms of learning result in the formation of concepts that represent coherent
collections of existing properties and values, while more complex forms of learning
lead to generalization of concepts and the formation of complex properties that in
turn lead to development of more com,,-, - ccpts.

We will consider a toy example of a Memor. \etwork interacting with a very
simple visual system that is capable of detectg the colors blue and green and the

-mitive shapes round and oval. The initial organization of the Memory Netxork
nto account these characterstics of the %isual system. Figure 5.6a is an

i,.,,mplified representation of the initial orgarnzation of the Memor Network. The
k ,ork has four pre-existing concepts namel%. the propertN HAS-COLOR and its

... tues BLUE and GRFEN and the propert. H4S-SHAP[-. and its values ROUND and
OVAL. In other words, the nodes representing the properties and values are already
connected to the visual system and may be actisated b. it under appropriate
conditions. The nodes representing the four concepts are committed nodes
embedded in a "primordial network" of free nodes that may be roughly partitioned
into three diffused sub-networks X, Y and Z. Network X consists of nodes that are
primarily connected to the nodes HAS-COfOR, BLUE and GREEN along with a host of
free nodes in netA ork Z. Nodes in network Y receive most of their connections from
the nodes H.AS-SHAPt_-. ROUND and OVAL and also trom numerous free nodes in
network Z. Finally. the nodes in network Z are connected to a large number of nodes
throughout the Memory Network. The existence of networks X and Y indicates that
-he Memory Network is pre-wired to "know" that BLLF and GREEN are values of
• ;*S-COIOR while ROUND and OVAL are the values of HAS-SHAPE.

- :re 5.6b depicts the result of learning an instance of a blue and round object.
figure ony shows the committed units and their interconnections. Learning an

stance involves two stages of recruitment: the binder nodes BI and R1 are
:Cruited first, followed by the concept node BRI. When the visual system detects
the color blue in the stimulus it activates the node H.AS-COLOR and BLUE. The
coincident activation results in the recruitment of a free node (B1) from the pool of
free nodes in network X. The node R1 is recru:, in an analogous manner from the
pool of nodes in network Y. The simultaneous .t i itv in BI and R1 leads to the
recruitment of the node (BRI) from network Z. Thereafter, the nodes BI and R1 act
as binder nodes and BR1 represents the newly acquired concept. B] is activated by
the coincident activity of HAS-COLOR and BLUE while R1 is actisated by the
coincident activity of HAS-SHAPE and ROUND. The activity. of the concept node BR I
is strongly correlated with the activity of BI and R1.

The working of the scheme depends on the assumptions we made about the pre-
existing structure of the Memor) Network. It %as crucial to assume the existence of

4,

i-" , ---- ..- -- - - .,-.' .. . - - - -



85

property and value nodes with appropriate connections to the visual system. The
organization of free nodes as networks X, Y and Z was equally important. Networks
X and Y provided binder nodes in order to associate properties with their values, and
the network Z provided a pool of nodes that could be recruited to "chunk" binder
nodes in order to form concepts.

Figure 5.6c depicts the Memory Network with three instances (BR1, BR2 and
BR3) of blue round objects and one instance (GO1) of a green oval object. In this
situation a second kind of concept formation may occur and result in the formation
of the concept "blue and round object" which is a generalization defined over BR1,
BR2 and BR3. The resulting network is shown in Figure 5.6d. The new concept is
represented by the node BR that owns the binders B and R that indicate its property
values. These property values correspond to the shared property values of the
instances.

The transformation from the network in Figure 5.6c to that in Figure 5.6d is best
explained with the help of the simpler networks shown in Figure 5.7. The network
shown in Figure 5.7b is the result of a similar transformation of the network in
Figure 5.7a. The three instances A, B and C have the same value (V) for the property
P and this forms the basis for the formation of the more general concept D. The
transformation occurs in two stages.

I. A chunking node for bl, b2 and b3 is recruited from a pool of free nodes
that serves the same function as network Z in the previous example, i.e.
provides a potential concept node.

II. i) Over a longer period of time, the multiple paths between P and V via bl,
b2 and b3 collapse into a single path via b, where b is one of the existing
binder nodes bl, b2 or b3. The collapsing of links does not mean that the
links disappear, but rather that the weights of links get reduced in such a
way that all binder nodes besides b, gradually become free nodes (are
released).

ii) The connection between b and D remain strong but the connections
between other binder nodes and D become weak.

iii) The links x,y and z (in effect) now emanate from D rather than the
binder nodes.

(All changes described in stage 11 happen during the same time interval).

The net effect of I and 11 is that the network shown in Figure 5.7a behaves like
the network shown in Figure 5.7b. The scheme that we hae just describedcharacterizes learning as network transformations that minimize the complexity of

the network (number of links and nodes) while maintaining the cause effect
relationships between existing concept nodes. Trhus, the nodes P, V, A, B and C have
roughly the same effect on each other in the two networks shown in Figures 5.7a and
5.7b. The complexity of networks is substantially reduced by formation of moregeneral concepts although this ma. not be evident from this simple example. In
general, if the generalization takes place o~er p properties and c instances (the values
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of p and c were 1 and 3 in the example of Figure 5.7 and 2 and 3 in the example of
Figure 5.6d), then the savings in the number of links and nodes is of the order of
prC.

Referring back to Figure 5.6d. BR, a node in network Z, will be recruited as a
chunking node of B1, B2, B3 as well as R I, R2 and R3. The release of binder nodes
and the collapsing of links will occur separately for the two properties HAS-COLOR
and HAS-SHAPE. Thus, B1, B2 and B3 will collapse into B while R1, R2 and R3 will
collapse into R.

We have only provided a crude description of how recruitment of free nodes and
release of committed nodes gives rise to representation of new instances and
development of concepts that are generalizations of existing concepts. The latter kind
of concept formation is accompanied by substantial reduction in the number of
committed nodes and links. We hope to refine some of these ideas in the near future.
A more detailed account %ill appear in [Shastri 841.

We expect that we will not require major changes in the basic design of our
networks in order to support learning. The connecuonist implementation described
in this paper uses some complex unit types but it is possible to implement the same

* basic design in terms of simpler unit txpes that are more likely to fit into a learning
scheme. The primarN reason for not using the simpler unit types was to keep the
simulations simple. The use of simpler unit types would result in larger networks
because more than one simple unit would be required to perform a function
currently performed b. a single unit. Probabl. the best wa to % iew this subsection
on learning and the other parts of Section 5 Is as plausibilit, arguments suggesting
that there are no insuperable barriers to a complete connectonist thcor. of semantic
memory. We would greatly appreciate comments on problems we have o~erlocked
or on an% other aspect of the report.
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Figure 5.1
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